Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0034

Oleanolic Acid Promotes Neuronal Differentiation and Histone Deacetylase 5 Phosphorylation in Rat Hippocampal Neurons  

Jo, Hye-Ryeong (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University)
Wang, Sung Eun (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University)
Kim, Yong-Seok (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University)
Lee, Chang Ho (Department of Pharmacology, Hanyang University)
Son, Hyeon (Department of Biomedical Sciences,Graduate School of Biomedical Science and Engineering, Hanyang University)
Abstract
Oleanolic acid (OA) has neurotrophic effects on neurons, although its use as a neurological drug requires further research. In the present study, we investigated the effects of OA and OA derivatives on the neuronal differentiation of rat hippocampal neural progenitor cells. In addition, we investigated whether the class II histone deacetylase (HDAC) 5 mediates the gene expression induced by OA. We found that OA and OA derivatives induced the formation of neurite spines and the expression of synapse-related molecules. OA and OA derivatives stimulated HDAC5 phosphorylation, and concurrently the nuclear export of HDCA5 and the expression of HDAC5 target genes, indicating that OA and OA derivatives induce neural differentiation and synapse formation via a pathway that involves HDAC5 phosphorylation.
Keywords
HDAC5; neuronal differentiation; oleanolic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berridge, M.V., Herst, P.M., and Tan, A.S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127-152.
2 Schneider, J.W., Gao, Z., Li, S., Farooqi, M., Tang, T.S., Bezprozvanny, I., Frantz, D.E., and Hsieh, J. (2008). Small-molecule activation of neuronal cell fate. Nat. Chem. Biol. 4, 408-410.   DOI
3 Soltani, M.H., Pichardo, R., Song, Z., Sangha, N., Camacho, F., Satyamoorthy, K., Sangueza, O.P., and Setaluri, V. (2005). Microtubule-associated protein 2, a marker of neuronal differentiation, induces mitotic defects, inhibits growth of melanoma cells, and predicts metastatic potential of cutaneous melanoma. Am. J. Pathol. 166, 1841-1850.   DOI
4 Son, H., Banasr, M., Choi, M., Chae, S.Y., Licznerski, P., Lee, B., Voleti, B., Li, N., Lepack, A., Fournier, N.M., et al. (2012). Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress. Proc. Natl. Acad. Sci. USA 109, 11378-11383.   DOI
5 Suh, N., Wang, Y., Honda, T., Gribble, G.W., Dmitrovsky, E., Hickey, W.F., Maue, R.A., Place, A.E., Porter, D.M., Spinella, M.J., et al. (1999). A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and anti-inflammatory activity. Cancer Res. 59, 336-341.
6 Turrigiano, G.G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422-435.   DOI
7 Volmar, C.-H., and Wahlestedt, C. (2015). Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1, 20-27.   DOI
8 Yi, L.T., Li, J., Liu, B.B., Luo, L., Liu, Q., and Geng, D. (2014). BDNFERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. J. Psychiatry Neurosci. 39, 348-359.   DOI
9 Yin, M.C. (2015). Inhibitory effects and actions of pentacyclic triterpenes upon glycation. BioMedicine 5, 13.   DOI
10 Broide, R.S., Redwine, J.M., Aftahi, N., Young, W., Bloom, F.E., and Winrow, C.J. (2007). Distribution of histone deacetylases 1-11 in the rat brain. J. Mol. Neurosci. 31, 47-58.   DOI
11 Castro, A.J., Frederico, M.J., Cazarolli, L.H., Mendes, C.P., Bretanha, L.C., Schmidt, E.C., Bouzon, Z.L., de Medeiros Pinto, V.A., da Fonte Ramos, C., Pizzolatti, M.G., et al. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Biophys. Acta 1850, 51-61.   DOI
12 Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L., and Bading, H. (2003). Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J. Neurochem. 85, 151-159.   DOI
13 Cho, S.O., Ban, J.Y., Kim, J.Y., Jeong, H.Y., Lee, I.S., Song, K.S., Bae, K., and Seong, Y.H. (2009). Aralia cordata protects against amyloid beta protein (25-35)-induced neurotoxicity in cultured neurons and has antidementia activities in mice. J. Pharmacol. Sci. 111, 22-32.   DOI
14 DuPont, R.L., Rice, D.P., Miller, L.S., Shiraki, S.S., Rowland, C.R., and Harwood, H.J. (1996). Economic costs of anxiety disorders. Anxiety 2, 167-172.   DOI
15 Cho, Y., Sloutsky, R., Naegle, K.M., and Cavalli, V. (2013). Injuryinduced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894-908.   DOI
16 Choi, M., Lee, S.H., Wang, S.E., Ko, S.Y., Song, M., Choi, J.S., Kim, Y.S., Duman, R.S., and Son, H. (2015). Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats. Proc. Natl. Acad. Sci. USA 112, 15755-15760.
17 Coppede, F. (2014). The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet. 5, 220.
18 Flavell, S.W., Cowan, C.W., Kim, T.K., Greer, P.L., Lin, Y., Paradis, S., Griffith, E.C., Hu, L.S., Chen, C., and Greenberg, M.E. (2006). Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008-1012.   DOI
19 Yu, Z., Zhang, W., and Kone, B.C. (2002). Histone deacetylases augment cytokine induction of the iNOS gene. J. Am. Soc. Nephrol. 13, 2009-2017.   DOI
20 Finsterwald, C., Carrard, A., and Martin, J.L. (2013). Role of saltinducible kinase 1 in the activation of MEF2-dependent transcription by BDNF. PloS one 8, e54545.   DOI
21 Ghosh, A., Carnahan, J., and Greenberg, M.E. (1994). Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263, 1618-1623.   DOI
22 Flavell, S.W., Kim, T.K., Gray, J.M., Harmin, D.A., Hemberg, M., Hong, E.J., Markenscoff-Papadimitriou, E., Bear, D.M., and Greenberg, M.E. (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022-1038.   DOI
23 Gangwal, A. (2013). Neuropharmacological effects of triterpenoids. Phytopharmacology 4, 354-372.
24 Gao, J., Wang, W.Y., Mao, Y.W., Graff, J., Guan, J.S., Pan, L., Mak, G., Kim, D., Su, S.C., and Tsai, L.H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105-1109.   DOI
25 Ha, C.H., Wang, W., Jhun, B.S., Wong, C., Hausser, A., Pfizenmaier, K., McKinsey, T.A., Olson, E.N., and Jin, Z.G. (2008). Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J. Biol. Chem. 283, 14590-14599.   DOI
26 Harada, A., Teng, J., Takei, Y., Oguchi, K., and Hirokawa, N. (2002). MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J. Cell Biol. 158, 541-549.   DOI
27 Lu, J., McKinsey, T.A., Nicol, R.L., and Olson, E.N. (2000). Signaldependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc. Natl. Acad. Sci. USA 97, 4070-4075.   DOI
28 Huang, H.Y., Liu, D.D., Chang, H.F., Chen, W.F., Hsu, H.R., Kuo, J.S., and Wang, M.J. (2012). Histone deacetylase inhibition mediates urocortin-induced antiproliferation and neuronal differentiation in neural stem cells. Stem Cells 30, 2760-2773.   DOI
29 Law, A.J., Weickert, C.S., Hyde, T.M., Kleinman, J.E., and Harrison, P.J. (2004). Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am. J. Psychiatry 161, 1848-1855.   DOI
30 Li, Y., Ishibashi, M., Satake, M., Chen, X., Oshima, Y., and Ohizumi, Y. (2003). Sterol and triterpenoid constituents of Verbena littoralis with NGF-potentiating activity. J. Nat. Prod. 66, 696-698.   DOI
31 Meier, K., and Brehm, A. (2014). Chromatin regulation: how complex does it get? Epigenetics 9, 1485-1495.   DOI
32 Ning, Y., Huang, J., Kalionis, B., Bian, Q., Dong, J., Wu, J., Tai, X., Xia, S., and Shen, Z. (2015). Oleanolic Acid Induces Differentiation of Neural Stem Cells to Neurons: An Involvement of Transcription Factor Nkx-2.5. Stem Cells Int. 2015, 672312.
33 Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C., and Kandel, E.R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137-1145.   DOI
34 Pollier, J., and Goossens, A. (2012). Oleanolic acid. Phytochemistry 77, 10-15.   DOI
35 Salma, J., and McDermott, J.C. (2012). Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J. Neurosci. 32, 2790-2803.   DOI