Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0160

Ionotropic Receptor 76b Is Required for Gustatory Aversion to Excessive Na+ in Drosophila  

Lee, Min Jung (Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University)
Sung, Ha Yeon (Department of Biological Sciences, Sungkyunkwan University)
Jo, HyunJi (Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University)
Kim, Hyung-Wook (College of Life Sciences, Sejong University)
Choi, Min Sung (Department of Biological Sciences, Sungkyunkwan University)
Kwon, Jae Young (Department of Biological Sciences, Sungkyunkwan University)
Kang, KyeongJin (Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University)
Abstract
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by $Na^+$-rich food requires Ionotropic Receptor 76b (Ir76b) in Drosophila labellar gustatory receptor neurons (GRNs). Concentrated sodium solutions with various anions caused feeding suppression dependent on Ir76b. Feeding aversion to caffeine and high concentrations of divalent cations and sorbitol was unimpaired in Ir76b-deficient animals, indicating sensory specificity of Ir76b-dependent $Na^+$ detection and the irrelevance of hyperosmolarity-driven mechanosensation to Ir76b-mediated feeding aversion. Ir76b-dependent $Na^+$-sensing GRNs in both L- and s-bristles are required for repulsion as opposed to the previous report where the L-bristle GRNs direct only low-$Na^+$ attraction. Our work extends the physiological implications of Ir76b from low-$Na^+$ attraction to high-$Na^+$ aversion, prompting further investigation of the physiological mechanisms that modulate two competing components of $Na^+$-evoked gustation coded in heterogeneous Ir76b-positive GRNs.
Keywords
capillary feeder assay; extracellular recordings; reverse genetic screening; salt taste aversion; variant ionotropic receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yarmolinsky, D.A, Zuker, C.S., and Ryba, N.J.P. (2009). Common sense about taste: from mammals to insects. Cell 139, 234-244.   DOI
2 Zelle, K.M., Lu, B., Pyfrom, S.C., and Ben-Shahar, Y. (2013). The genetic architecture of degenerin/epithelial sodium channels in Drosophila. G3 (Bethesda). 3, 441-450.
3 Zhang, Y.V, Ni, J., and Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334-1338.   DOI
4 Zitron, A.E., and Hawley, R.S. (1989). The genetic analysis of distributive segregation in Drosophila melanogaster. Genetics 122, 801-821.
5 Benton, R., Vannice, K.S., Gomez-Diaz, C., and Vosshall, L.B. (2009). Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149-162.   DOI
6 Brand, J. G., Teeter, J. H., Kumazawa, T., Huque, T., and Bayley, D. L. (1991). Transduction mechanisms for the taste of amino acids. Physiol. Behav. 49, 899-904.   DOI
7 Rosenzweig, M., Kang, K., and Garrity, P.A.P.A. (2008). Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 105, 14668-73.   DOI
8 Niewalda, T., Singhal, N., Fiala, A., Saumweber, T., Wegener, S., and Gerber, B. (2008). Salt processing in larval Drosophila: choice, feeding, and learning shift from appetitive to aversive in a concentration-dependent way. Chem. Senses 33, 685-692.   DOI
9 Oka, Y., Butnaru, M., von Buchholtz, L., Ryba, N.J.P., and Zuker, C.S. (2013). High salt recruits aversive taste pathways. Nature 1-5.
10 Plested, A.J.R., Vijayan, R., Biggin, P.C., and Mayer, M.L. (2008). Molecular basis of kainate receptor modulation by sodium. Neuron 58, 720-735.   DOI
11 Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D., and Carlson, J.R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258-272.   DOI
12 Silbering, A.F., Rytz, R., Grosjean, Y., Abuin, L., Ramdya, P., Jefferis, G.S.X.E., and Benton, R. (2011). Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J. Neurosci. 31, 13357-75.   DOI
13 Tsugane, S., Sasazuki, S., Kobayashi, M., and Sasaki, S. (2004). Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. Br. J. Cancer 90, 128-134.   DOI
14 Wang, X., Li, G., Liu, J., Liu, J., Xu, X.Z.S., Wang, X., Li, G., Liu, J., Liu, J., and Xu, X.Z.S. (2016). TMC-1 mediates alkaline sensation in C . elegans through nociceptive neurons. Neuron 91, 146-154.   DOI
15 Wong, X.M., Younger, S., Peters, C.J., Jan, Y.N., Jan, L.Y., and Shim, W. (2013). Subdued, a TMEM16 family $Ca^{2+}$ -activated $Ca^{-}$ channel in Drosophila melanogaster with an unexpected role in host defense. Elife 2, e00862.
16 Croset, V., Schleyer, M., Arguello, J.R., Gerber, B., and Benton, R. (2016). A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci. Rep. 6, 34871.   DOI
17 Calleja, M., Moreno, E., Pelaz, S., and Morata, G. (1996). Visualization of gene expression in living adult Drosophila. Science 274, 252-255.   DOI
18 Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D.A., Hummler, E., Ryba, N.J.P., and Zuker, C.S. (2010). The cells and peripheral representation of sodium taste in mice. Nature 464, 297-301.   DOI
19 Chatzigeorgiou, M., Bang, S., Hwang, S.W., and Schafer, W.R. (2013). tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494, 95-99.   DOI
20 Chung, K.M., Lee, S.B., Heur, R., Cho, Y.K., Lee, C.H., Jung, H.Y., Chung, S.H., Lee, S.P., and Kim, K.N. (2005). Glutamate-induced cobalt uptake elicited by kainate receptors in rat taste bud cells. Chem. Senses 30, 137-143.   DOI
21 Deshpande, S.A., Carvalho, G.B., Amador, A., Phillips, A.M., Hoxha, S., Lizotte, K.J., and Ja, W.W. (2014). Quantifying Drosophila food intake: comparative analysis of current methodology. Nat. Meth. 11, 535-540.   DOI
22 Du, E.J., Ahn, T.J., Choi, M.S., Kwon, I., Kim, H.-W., Kwon, J.Y., and Kang, K. (2015). The mosquito repellent citronellal directly potentiates Drosophila TRPA1, facilitating feeding suppression. Mol. Cells 38, 911-917.   DOI
23 Du, E.J., Ahn, T.J., Kwon, I., Lee, J.H., Park, J.-H., Park, S.H., Kang, T.M., Cho, H., Kim, T.J., Kim, H.-W., et al. (2016a). TrpA1 regulates defecation of food-borne pathogens under the control of the duox pathway. PLoS Genet. 12, e1005773.   DOI
24 Du, E.J., Ahn, T.J., Wen, X., Seo, D.-W., Na, D.L., Kwon, J.Y., Choi, M., Kim, H.-W., Cho, H., and Kang, K. (2016b). Nucleophile sensitivity of Drosophila TRPA1 underlies light-induced feeding deterrence. Elife 5, e18425.
25 Hahn, Y., Kim, D.S., Pastan, I.H., and Lee, B. (2009). Anoctamin and transmembrane channel-like proteins are evolutionarily related. Int. J. Mol. Med. 24, 51-55.
26 Frisoli, T.M., Schmieder, R.E., Grodzicki, T., and Messerli, F.H. (2012). Salt and hypertension: is salt dietary reduction worth the effort? Am. J. Med. 125, 433-439.   DOI
27 Ganguly, A., Pang, L., Duong, V.-K., Lee, A., Schoniger, H., Varady, E., and Dahanukar, A. (2017). A Molecular and cellular contextdependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737-750.   DOI
28 Gramates, L.S., Marygold, S.J., Santos, G. dos, Urbano, J.-M., Antonazzo, G., Matthews, B.B., Rey, A.J., Tabone, C.J., Crosby, M.A., Emmert, D.B., et al. (2017). FlyBase at 25: looking to the future. Nucleic Acids Res. 45, D663-D671.   DOI
29 He, F.J., and MacGregor, G.A. (2008). A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens 23, 363-384.
30 Hiroi, M., Meunier, N., Marion-Poll, F., and Tanimura, T. (2004). Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J. Neurobiol. 61, 333-342.   DOI
31 Hodgson, E.S., Lettvin, J.Y., and Roedert, K.D. (1955). Physiology of a primary chemoreceptor unit. Science 122, 121-122.   DOI
32 Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., Liong, J.C., Brummel, T., and Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253-8256.   DOI
33 Kang, K., Pulver, S.R., Panzano, V.C., Chang, E.C., Griffith, L.C., Theobald, D.L., and Garrity, P.A. (2010). Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597-600.   DOI
34 Knecht, Z.A., Silbering, A.F., Cruz, J., Yang, L., Croset, V., Benton, R. and Garrity, P.A. (2017). Ionotropic Receptor-dependent moist and dry cells control hygrosensation in Drosophila. Elife 6,.
35 Kang, K., Panzano, V.C., Chang, E.C., Ni, L., Dainis, A.M., Jenkins, A.M., Regna, K., Muskavitch, M.A.T. and Garrity, P.A. (2012). Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature 481, 76-80.   DOI
36 Kleinewietfeld, M., Manzel, A., Titze, J., Kvakan, H., Yosef, N., Linker, R.A., Muller, D.N., and Hafler, D.A. (2013). Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518-522.   DOI
37 Knecht, Z.A., Silbering, A.F., Ni, L., Klein, M., Budelli, G., Bell, R., Abuin, L., Ferrer, A.J., Samuel, A.D., Benton, R., et al. (2016). Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila. Elife 5, 44-60.
38 Ko, K.I., Root, C.M., Lindsay, S.A., Zaninovich, O.A., Shepherd, A.K., Wasserman, S.A., Kim, S.M., Wang, J.W., Pachter, L., Lavista-Llanos, S., et al. (2015). Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. Elife 4, e50801.
39 Mun, H.-C., Franks, A.H., Culverston, E.L., Krapcho, K., Nemeth, E.F., and Conigrave, A.D. (2004). The venus fly trap domain of the extracellular $Ca^{2+}$-sensing receptor is required for l-amino acid sensing. J. Biol. Chem. 279, 51739-51744.   DOI
40 Koushika, S.P., Lisbin, M.J., and White, K. (1996). ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Curr. Biol. 6, 1634-1641.   DOI
41 Ni, L., Klein, M., Svec, K.V, Budelli, G., Chang, E.C., Ferrer, A.J., Benton, R., Samuel, A.D., and Garrity, P. A. (2016). The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife 5, e13254.