Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2345

Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs  

Wang, Xinxin (The First Affiliated Hospital of Zhengzhou University)
Ma, Shanshan (School of Life Sciences, Zhengzhou University)
Meng, Nan (The First Affiliated Hospital of Zhengzhou University)
Yao, Ning (School of Life Sciences, Zhengzhou University)
Zhang, Kun (School of Life Sciences, Zhengzhou University)
Li, Qinghua (School of Life Sciences, Zhengzhou University)
Zhang, Yanting (School of Life Sciences, Zhengzhou University)
Xing, Qu (School of Life Sciences, Zhengzhou University)
Han, Kang (School of Life Sciences, Zhengzhou University)
Song, Jishi (School of Life Sciences, Zhengzhou University)
Yang, Bo (The First Affiliated Hospital of Zhengzhou University)
Guan, Fangxia (The First Affiliated Hospital of Zhengzhou University)
Abstract
Resveratrol (RES) plays a critical role in the fate of cells and longevity of animals via activation of the sirtuins1 (SIRT1) gene. In the present study, we intend to investigate whether RES could promote the self-renewal and neural-lineage differentiation in human umbilical cord derived MSCs (hUC-MSCs) in vitro at concentrations ranging from 0.1 to $10{\mu}M$, and whether it exerts the effects by modulating the SIRT1 signaling. Herein, we demonstrated that RES at the concentrations of 0.1, 1 and $2.5{\mu}M$ could promote cell viability and proliferation, mitigate senescence and induce expression of SIRT1 and Proliferating Cell Nuclear Antigen (PCNA) while inhibit the expression of p53 and p16. However, the effects were reversed by 5 and $10{\mu}M$ of RES. Furthermore, RES could promote neural differentiation in a dose-dependent manner as evidenced by morphological changes and expression of neural markers (Nestin, ${\beta}III-tubulin$ and NSE), as well as pro-neural transcription factors Neurogenin (Ngn)1, Ngn2 and Mash1. Taken together, RES exerts a dosage-dependent effect on the self-renewal and neural differentiation of hUC-MSCs via SIRT1 signaling. The current study provides a new strategy to regulate the fate of hUC-MSCs and suggests a more favorable in vitro cell culture conditions for hUCMSCs-based therapies for some intractable neurological disorders.
Keywords
human umbilical cord derived mesenchymal stem cells; neural differentiation; resveratrol; self-renewal; SIRT1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Atkins, K.M., Thomas, L.L., Barroso-Gonzalez, J., Thomas, L., Auclair, S., Yin, J., Kang, H., Chung, J.H., Dikeakos, J.D., and Thomas, G. (2014). The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. Cell Rep. 8, 1545-1557.   DOI
2 Can, A., and Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25, 2886-2895.   DOI
3 Cardozo, A.J., Gomez, D.E., and Argibay, P.F. (2012). Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene 511, 427-436.   DOI
4 Chen, H., Liu, X., Chen, H., Cao, J., Zhang, L., Hu, X., and Wang, J. (2014a). Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res. Rev. 13, 55-64.   DOI
5 Chen, H., Liu, X., Zhu, W., Chen, H., Hu, X., Jiang, Z., Xu, Y., Wang, L., Zhou, Y., Chen, P., et al. (2014b). SIRT1 ameliorates agerelated senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 6, 103.
6 Chen, B., Zang, W., Wang, J., Huang, Y., He, Y., Yan, L., Liu, J., and Zheng, W. (2015). The chemical biology of sirtuins. Chem. Soc. Rev. 44, 5246-5264.   DOI
7 da Luz, P.L., Tanaka, L., Brum, P.C., Dourado, P.M., Favarato, D., Krieger, J.E., and Laurindo, F.R. (2012). Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis 224, 136-142.   DOI
8 Dai, Z., Li, Y., Quarles, L.D., Song, T., Pan, W., Zhou, H., and Xiao, Z. (2007). Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14, 806-814.   DOI
9 Godoy, J.A., Zolezzi, J.M., Braidy, N., and Inestrosa, N.C. (2014). Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol. Neurobiol. 50, 744-756.   DOI
10 Guo, R., Li, W., Liu, B., Li, S., Zhang, B., and Xu, Y. (2014). Resveratrol protects vascular smooth muscle cells against high glucose-induced oxidative stress and cell proliferation in vitro. Med. Sci. Monit Basic Res. 20, 82-92.   DOI
11 Heng, B.C., Saxena, P., and Fussenegger, M. (2014). Heterogeneity of baseline neural marker expression by undifferentiated mesenchymal stem cells may be correlated to donor age. J. Biotechnol. 174, 29-33.   DOI
12 Hisahara, S., Chiba, S., Matsumoto, H., Tanno, M., Yagi, H., Shimohama, S., Sato, M., and Horio, Y. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. USA 105, 15599-15604.   DOI
13 Hubbard, B.P., and Sinclair, D.A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146-154.   DOI
14 Ido, Y., Duranton, A., Lan, F., Weikel, K.A., Breton, L., and Ruderman, N.B. (2015). Resveratrol prevents oxidative stressinduced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS One 10, e0115341.   DOI
15 Jackson, S.J., Singletary, K.W., Murphy, L.L., Venema, R.C., and Young, A.J. (2016). Phytonutrients differentially stimulate NAD(P)H:quinone oxidoreductase, inhibit proliferation, and trigger mitotic catastrophe in Hepa1c1c7 cells. J. Med. Food 19, 47-53.   DOI
16 Joe, I.S., Jeong, S.G., and Cho, G.W. (2015). Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells. Neurosci. Lett. 584, 97-102.   DOI
17 Liu, B., Ghosh, S., Yang, X., Zheng, H., Liu, X., Wang, Z., Jin, G., Zheng, B., Kennedy, B.K., Suh, Y., et al. (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16, 738-750.   DOI
18 Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G.G., Demiralp, D.O., Tukun, A., Uckan, D., and Can, A. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25, 319-331.   DOI
19 Kumazaki, M., Noguchi, S., Yasui, Y., Iwasaki, J., Shinohara, H., Yamada, N., and Akao, Y. (2013). Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem. 24, 1849-1858.   DOI
20 Lee, J.K., Jin, H.K., Endo, S., Schuchman, E.H., Carter, J.E., and Bae, J.S. (2010). Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells 28, 329-343.
21 Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148.   DOI
22 Ma, S., Liang, S., Jiao, H., Chi, L., Shi, X., Tian, Y., Yang, B., and Guan, F. (2014). Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1). Mol. Cell Biochem. 385, 277-286.   DOI
23 Marambaud, P., Zhao, H., and Davies, P. (2005). Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J. Biol. Chem. 280, 37377-37382.   DOI
24 Pinarli, F.A., Turan, N.N., Pinarli, F.G., Okur, A., Sonmez, D., Ulus, T., Oguz, A., Karadeniz, C., and Delibasi, T. (2013). Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats. Pediatr. Hematol. Oncol. 30, 226-238.   DOI
25 Mikula-Pietrasik, J., Kuczmarska, A., Rubis, B., Filas, V., Murias, M., Zielinski, P., Piwocka, K., and Ksiazek, K. (2012). Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radic. Biol. Med. 52, 2234-2245.   DOI
26 Ozcan, P., Ficicioglu, C., Yildirim, O.K., Ozkan, F., Akkaya, H., and Aslan, I. (2015). Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague-Dawley rats. Reprod. Biomed. Online 31, 404-410.   DOI
27 Park, H.R., Kong, K.H., Yu, B.P., Mattson, M.P., and Lee, J. (2012). Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J. Biol. Chem. 287, 42588-42600.   DOI
28 Rathbone, C.R., Booth, F.W., and Lees, S.J. (2009). Sirt1 increases skeletal muscle precursor cell proliferation. Eur. J. Cell Biol. 88, 35-44.   DOI
29 Rehan, L., Laszki-Szczachor, K., Sobieszczanska, M., and Polak-Jonkisz, D. (2014). SIRT1 and NAD as regulators of ageing. Life Sci. 105, 1-6.   DOI
30 Rimmele, P., Lofek-Czubek, S., and Ghaffari, S. (2014). Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Am. J. Hematol. 89, E235-238.   DOI
31 Saharan, S., Jhaveri, D.J., and Bartlett, P.F. (2013). SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J. Neurosci. Res. 91, 642-659.   DOI
32 Vassallo, P.F., Simoncini, S., Ligi, I., Chateau, A.L., Bachelier, R., Robert, S., Morere, J., Fernandez, S., Guillet, B., Marcelli, M., et al. (2014). Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123, 2116-2126.   DOI
33 Simic, P., Zainabadi, K., Bell, E., Sykes, D.B., Saez, B., Lotinun, S., Baron, R., Scadden, D., Schipani, E., and Guarente, L. (2013). SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol. Med. 5, 430-440.   DOI
34 Song, L.H., Pan, W., Yu, Y.H., Quarles, L.D., Zhou, H.H., and Xiao, Z.S. (2006). Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In Vitro 20, 915-922.   DOI
35 Tsai, J.H., Hsu, L.S., Lin, C.L., Hong, H.M., Pan, M.H., Way, T.D., and Chen, W.J. (2013). 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/betacatenin signaling cascades and reversal of epithelialmesenchymal transition. Toxicol. Appl. Pharmacol. 272, 746-756.   DOI
36 Yu, Q., Liu, L., Duan, Y., Wang, Y., Xuan, X., Zhou, L., and Liu, W. (2013). Wnt/beta-catenin signaling regulates neuronal differentiation of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 439, 297-302.   DOI
37 Yuan, H.F., Zhai, C., Yan, X.L., Zhao, D.D., Wang, J.X., Zeng, Q., Chen, L., Nan, X., He, L.J., Li, S.T., et al. (2012). SIRT1 is required for long-term growth of human mesenchymal stem cells. J. Mol. Med. (Berl). 90, 389-400.   DOI
38 Zhang, D.Y., Wang, H.J., and Tan, Y.Z. (2011). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 6, e21397.   DOI
39 Zhu, Y., He, W., Gao, X., Li, B., Mei, C., Xu, R., and Chen, H. (2015). Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep. 5, 17730.   DOI
40 Zhang, T., Tian, F., Wang, J., Zhou, S., Dong, X., Guo, K., Jing, J., Zhou, Y., and Chen, Y. (2015). Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation. Cell Stress Chaperones 20, 787-792.   DOI
41 Zhu, X., Zhang, Y., Li, Q., Yang, L., Zhang, N., Ma, S., Zhang, K., Song, J. and Guan, F. (2016). ${\beta}$-carotene induces apoptosis in human esophageal squamous cell carcinoma cell lines via the Cav-1/AKT/NF-kappaB signaling pathway. J. Biochem. Mol. Toxicol. 30, 148-157.   DOI