Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0066

Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus  

Mohl, Britta S. (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University)
Chen, Jia (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University)
Sathiyamoorthy, Karthik (Department of Structural Biology, Stanford University School of Medicine)
Jardetzky, Theodore S. (Department of Structural Biology, Stanford University School of Medicine)
Longnecker, Richard (Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University)
Abstract
Epstein-Barr virus (EBV) is the prototypical ${\gamma}$-herpesvirus and an obligate human pathogen that infects mainly epithelial cells and B cells, which can result in malignancies. EBV infects these target cells by fusing with the viral and cellular lipid bilayer membranes using multiple viral factors and host receptor(s) thus exhibiting a unique complexity in its entry machinery. To enter epithelial cells, EBV requires minimally the conserved core fusion machinery comprised of the glycoproteins gH/gL acting as the receptor-binding complex and gB as the fusogen. EBV can enter B cells using gp42, which binds tightly to gH/gL and interacts with host HLA class II, activating fusion. Previously, we published the individual crystal structures of EBV entry factors, such as gH/gL and gp42, the EBV/host receptor complex, gp42/HLA-DR1, and the fusion protein EBV gB in a postfusion conformation, which allowed us to identify structural determinants and regions critical for receptor-binding and membrane fusion. Recently, we reported different low resolution models of the EBV B cell entry triggering complex (gHgL/gp42/HLA class II) in "open" and "closed" states based on negative-stain single particle electron microscopy, which provide further mechanistic insights. This review summarizes the current knowledge of these key players in EBV entry and how their structures impact receptor-binding and the triggering of gB-mediated fusion.
Keywords
entry; Epstein-Barr virus; fusion; herpesvirus; tropism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adler, B. (2015). A viral pilot for HCMV navigation? Viruses 7, 3857- 3862.   DOI
2 Atanasiu, D., Whitbeck, J.C., de Leon, M.P., Lou, H., Hannah, B.P., Cohen, G.H., and Eisenberg, R.J. (2010). Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J. Virol. 84, 3825-3834.   DOI
3 Backovic, M., Jardetzky, T.S., and Longnecker, R. (2007a). Hydrophobic residues that form putative fusion loops of Epstein- Barr virus glycoprotein B are critical for fusion activity. J. Virol. 81, 9596-9600.   DOI
4 Backovic, M., Leser, G.P., Lamb, R.A., Longnecker, R., and Jardetzky, T.S. (2007b). Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 368, 102-113.   DOI
5 Backovic, M., Longnecker, R., and Jardetzky, T.S. (2009). Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc. Natl. Acad. Sci. USA 106, 2880-2885.   DOI
6 Backovic, M., DuBois, R.M., Cockburn, J.J., Sharff, A.J., Vaney, M.C., Granzow, H., Klupp, B.G., Bricogne, G., Mettenleiter, T.C., and Rey, F.A. (2010). Structure of a core fragment of glycoprotein H from pseudorabies virus in complex with antibody. Proc. Natl. Acad. Sci. USA 107, 22635-22640.   DOI
7 Böhm, S.W., Eckroth, E., Backovic, M., Klupp, B.G., Rey, F.A., Mettenleiter, T.C., and Fuchs, W. (2015). Structure-based functional analyses of domains II and III of pseudorabies virus glycoprotein H. J. Virol. 89, 1364-1376.   DOI
8 Borza, C.M., and Hutt-Fletcher, L.M. (2002). Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 8, 594-599.   DOI
9 Burke, H.G., and Heldwein, E.E. (2015). Crystal structure of the human cytomegalovirus Glycoprotein B. PLoS Pathog. 11, e1005227.   DOI
10 Cairns, T.M., Landsburg, D.J., Whitbeck, J.C., Eisenberg, R.J., and Cohen, G.H. (2005). Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 332, 550-562.   DOI
11 Chandramouli, S., Ciferri, C., Nikitin, P.A., Calo, S., Gerrein, R., Balabanis, K., Monroe, J., Hebner, C., Lilja, A.E., Settembre, E.C., et al. (2015). Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat. Commun. 6, 8176.   DOI
12 Chesnokova, L.S., and Hutt-Fletcher, L.M. (2011). Fusion of Epstein-Barr virus with epithelial cells can be triggered by alphavbeta5 in addition to alphavbeta6 and alphavbeta8, and integrin binding triggers a conformational change in glycoproteins gHgL. J. Virol. 85, 13214-13223.   DOI
13 Chen, J., Rowe, C.L., Jardetzky, T.S., and Longnecker, R. (2012). The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio 3, pii: e00290-11.
14 Chen, J., Jardetzky, T.S., and Longnecker, R. (2013). The large groove found in the gH/gL structure is an important functional domain for Epstein-Barr virus fusion. J. Virol. 87, 3620-3627.   DOI
15 Chen, J., Zhang, X., Jardetzky, T.S., and Longnecker, R. (2014). The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic Cterminal tail domain regulates the energy requirement for EBVinduced membrane fusion. J. Virol. 88, 11686-11695.   DOI
16 Chowdary, T.K., Cairns, T.M., Atanasiu, D., Cohen, G.H., Eisenberg, R.J., and Heldwein, E.E. (2010). Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat. Struct. Mol. Biol. 17, 882-888.   DOI
17 Connolly, S.A., Jackson, J.O., Jardetzky, T.S., and Longnecker, R. (2011). Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 9, 369-381.   DOI
18 Dong, X., Hudson, N.E., Lu, C., and Springer, T.A. (2014). Structural determinants of integrin beta-subunit specificity for latent TGF-beta. Nat. Struct. Mol. Biol. 21, 1091-1096.   DOI
19 Drozdetskiy, A., Cole, C., Procter, J., and Barton, G.J. (2015). JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389-394.   DOI
20 Galdiero, M., Whiteley, A., Bruun, B., Bell, S., Minson, T., and Browne, H. (1997). Site-directed and linker insertion mutagenesis of herpes simplex virus type 1 glycoprotein H. J. Virol. 71, 2163-2170.
21 Garcia, N.J., Chen, J., and Longnecker, R. (2013). Modulation of Epstein-Barr virus glycoprotein B (gB) fusion activity by the gB cytoplasmic tail domain. MBio 4, e00571-00512.
22 Gompels, U.A., Carss, A.L., Saxby, C., Hancock, D.C., Forrester, A., and Minson, A.C. (1991). Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J. Virol. 65, 2393-2401.
23 Gong, M., and Kieff, E. (1990). Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J. Virol. 64, 1507-1516.
24 Haan, K.M., Lee, S.K., and Longnecker, R. (2001). Different functional domains in the cytoplasmic tail of glycoprotein B are involved in Epstein-Barr virus-induced membrane fusion. Virology 290, 106-114.   DOI
25 Harman, A., Browne, H., and Minson, T. (2002). The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J. Virol. 76, 10708-10716.   DOI
26 Heldwein, E.E., Lou, H., Bender, F.C., Cohen, G.H., Eisenberg, R.J., and Harrison, S.C. (2006). Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217-220.   DOI
27 Hutt-Fletcher, L.M., and Chesnokova, L.S. (2010). Integrins as triggers of Epstein-Barr virus fusion and epithelial cell infection. Virulence 1, 395-398.   DOI
28 Kirschner, A.N., Lowrey, A.S., Longnecker, R., and Jardetzky, T.S. (2007). Binding-site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B-cell membrane fusion. J. Virol. 81, 9216-9229.   DOI
29 Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W., and Delecluse, H.J. (2000). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J. Virol. 74, 10142-10152.   DOI
30 Jasirwan, C., Furusawa, Y., Tang, H., Maeki, T., and Mori, Y. (2014). Human herpesvirus-6A gQ1 and gQ2 are critical for human CD46 usage. Microbiol. Immunol. 58, 22-30.   DOI
31 Kirschner, A.N., Sorem, J., Longnecker, R., and Jardetzky, T.S. (2009). Structure of Epstein-Barr virus glycoprotein 42 suggests a mechanism for triggering receptor-activated virus entry. Structure 17, 223-233.   DOI
32 Langeland, N., Oyan, A.M., Marsden, H.S., Cross, A., Glorioso, J.C., Moore, L.J., and Haarr, L. (1990). Localization on the herpes simplex virus type 1 genome of a region encoding proteins involved in adsorption to the cellular receptor. J. Virol. 64, 1271-1277.
33 Lee, S.K., and Longnecker, R. (1997). The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J. Virol. 71, 4092-4097.
34 Liu, F., Marquardt, G., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Mapping the N-terminal residues of Epstein-Barr virus gp42 that bind gH/gL by using fluorescence polarization and cell-based fusion assays. J. Virol. 84, 10375-10385.   DOI
35 Longnecker, R., Kieff, E., and Cohen, J. (2013). Epstein-Barr virus, 6th eds. (Philadelphia, PA, Lippincott, Wilkins, and Williams).
36 Mohl, B.S., Schroter, C., Klupp, B.G., Fuchs, W., Mettenleiter, T.C., Jardetzky, T.S., and Longnecker, R. (2015). Comparative mutagenesis of Pseudorabies and Epstein-Barr virus gH identifies a structural determinant within domain III of gH required for surface expression and entry function. J. Virol. 90, 2285-2293.
37 Matsuura, H., Kirschner, A.N., Longnecker, R., and Jardetzky, T.S. (2010). Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc. Natl. Acad. Sci. USA 107, 22641-22646.   DOI
38 Miller, N., and Hutt-Fletcher, L.M. (1992). Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 66, 3409-3414.
39 Mohl, B.S., Sathiyamoorthy, K., Jardetzky, T.S., and Longnecker, R. (2014). The conserved disulfide bond within domain II (D-II) of Epstein-Barr virus (EBV) gH has divergent roles in membrane fusion with epithelial cells and B cells. J. Virol. 88, 13570-13579.   DOI
40 Mori, Y. (2009). Recent topics related to human herpesvirus 6 cell tropism. Cell Microbiol. 11, 1001-1006.   DOI
41 Mullen, M.M., Haan, K.M., Longnecker, R., and Jardetzky, T.S. (2002). Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9, 375-385.   DOI
42 Nemerow, G.R., and Cooper, N.R. (1984). Early events in the infection of human B lymphocytes by Epstein-Barr virus: the internalization process. Virology 132, 186-198.   DOI
43 Ogembo, J.G., Kannan, L., Ghiran, I., Nicholson-Weller, A., Finberg, R.W., Tsokos, G.C., and Fingeroth, J.D. (2013). Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 3, 371-385.   DOI
44 Plate, A.E., Reimer, J.J., Jardetzky, T.S., and Longnecker, R. (2011). Mapping regions of Epstein-Barr virus (EBV) glycoprotein B (gB) important for fusion function with gH/gL. Virology 413, 26-38.   DOI
45 Omerovic, J., and Longnecker, R. (2007). Functional homology of gHs and gLs from EBV-related gamma-herpesviruses for EBV-induced membrane fusion. Virology 365, 157-165.   DOI
46 Omerovic, J., Lev, L., and Longnecker, R. (2005). The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with epithelial and B cells. J. Virol. 79, 12408-12415.   DOI
47 Plate, A.E., Smajlovic, J., Jardetzky, T.S., and Longnecker, R. (2009). Functional analysis of glycoprotein L (gL) from rhesus lymphocryptovirus in Epstein-Barr virus-mediated cell fusion indicates a direct role of gL in gB-induced membrane fusion. J. Virol. 83, 7678-7689.   DOI
48 Revello, M.G., and Gerna, G. (2010). Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications. Rev. Med. Virol. 20, 136-155.   DOI
49 Roche, S., Bressanelli, S., Rey, F.A., and Gaudin, Y. (2006). Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313, 187-191.   DOI
50 Rogalin, H.B., and Heldwein, E.E. (2015). Interplay between the herpes simplex virus 1 gB cytodomain and the gH cytotail during cell-cell fusion. J. Virol. 89, 12262-12272.   DOI
51 Sathiyamoorthy, K., Jiang, J., Hu, Y.X., Rowe, C.L., Möhl, B.S., Chen, J., Jiang, W., Mellins, E.D., Longnecker, R., Zhou, Z.H., et al. (2014). Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog. 10, e1004309.   DOI
52 Spear, P.G., and Longnecker, R. (2003). Herpesvirus entry: an update. J. Virol. 77, 10179-10185.   DOI
53 Schroter, C., Klupp, B.G., Fuchs, W., Gerhard, M., Backovic, M., Rey, F.A., and Mettenleiter, T.C. (2014). The highly conserved proline at position 438 in Pseudorabies Virus gH is important for regulation of membrane fusion. J. Virol. 88, 13064-13072.   DOI
54 Silva, A.L., Omerovic, J., Jardetzky, T.S., and Longnecker, R. (2004). Mutational analyses of Epstein-Barr virus glycoprotein 42 reveal functional domains not involved in receptor binding but required for membrane fusion. J. Virol. 78, 5946-5956.   DOI
55 Silverman, J.L., Greene, N.G., King, D.S., and Heldwein, E.E. (2012). Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J. Virol. 86, 8171-8184.   DOI
56 Stampfer, S.D., and Heldwein, E.E. (2012). Stuck in the middle: structural insights into the role of the gH/gL heterodimer in herpesvirus entry. Curr. Opin. Virol. 3, 13-19.
57 Steven, A.C., and Spear, P.G. (2006). Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science 313, 177-178.   DOI
58 Tang, H., Wang, J., Mahmoud, N.F., and Mori, Y. (2014). Detailed study of the interaction between human herpesvirus 6B glycoprotein complex and its cellular receptor, human CD134. J. Virol. 88, 10875-10882.   DOI
59 Tugizov, S.M., Berline, J.W., and Palefsky, J.M. (2003). Epstein- Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 9, 307-314.   DOI
60 Wang, X., Kenyon, W.J., Li, Q., Mullberg, J., and Hutt-Fletcher, L.M. (1998). Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J. Virol. 72, 5552-5558.
61 Yang, E., Arvin, A.M., and Oliver, S.L. (2014). The cytoplasmic domain of varicella-zoster virus glycoprotein H regulates syncytia formation and skin pathogenesis. PLoS Pathog. 10, e1004173.   DOI
62 Waning, D.L., Russell, C.J., Jardetzky, T.S., and Lamb, R.A. (2004). Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proc. Natl. Acad. Sci. USA 101, 9217-9222.   DOI
63 Wu, L., Borza, C.M., and Hutt-Fletcher, L.M. (2005). Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. J. Virol. 79, 10923-10930.   DOI
64 Xing, Y., Oliver, S.L., Nguyen, T., Ciferri, C., Nandi, A., Hickman, J., Giovani, C., Yang, E., Palladino, G., Grose, C., et al. (2015). A site of varicella-zoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL. Proc. Natl. Acad. Sci. USA 112, 6056-6061.   DOI
65 Zago, A., Connolly, S.A., Spear, P.G., and Longnecker, R. (2012). The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination. Virus Res. 171, 227-230.
66 Zhou, M., Lanchy, J.M., and Ryckman, B.J. (2015). Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gH/gL/UL128-131 broadens virus tropism through a distinct mechanism. J. Virol. 89, 8999-9009.   DOI