Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0233

Epigenetic Changes in Neurodegenerative Diseases  

Kwon, Min Jee (Department of Brain & Cognitive Sciences, DGIST)
Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Han, Myeong Hoon (Department of Brain & Cognitive Sciences, DGIST)
Lee, Sung Bae (Department of Brain & Cognitive Sciences, DGIST)
Abstract
Afflicted neurons in various neurodegenerative diseases generally display diverse and complex pathological features before catastrophic occurrence of massive neuronal loss at the late stages of the diseases. This complex nature of neuronal pathophysiology inevitably implicates systemwide changes in basic cellular activities such as transcriptional controls and signal cascades, and so on, as a cause. Recently, as one of these systemwide cellular changes associated with neurodegenerative diseases, epigenetic changes caused by protein toxicity have begun to be highlighted. Notably, recent advances in related techniques including next-generation sequencing (NGS) and mass spectrometry enable us to monitor changes in the post-translational modifications (PTMs) of histone proteins and to link these changes in histone PTMs to the specific transcriptional changes. Indeed, epigenetic alterations and consequent changes in neuronal transcriptome are now begun to be extensively studied in neurodegenerative diseases including Alzheimer's disease (AD). In this review, we will discuss details of our current understandings on epigenetic changes associated with two representative neurodegenerative diseases [AD and polyglutamine (polyQ) diseases] and further discuss possible future development of pharmaceutical treatment of the diseases through modulating these epigenetic changes.
Keywords
epigenetic changes; histone; neurodegenerative diseases; post-translational modifications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Giralt, A., Puigdellivol, M., Carreton, O., Paoletti, P., Valero, J., Parra-Damas, A., Saura, C.A., Alberch, J., and Gines, S. (2012). Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity. Hum. Mol. Genet. 21, 1203-1216.   DOI
2 Gjoneska, E., Pfenning, A.R., Mathys, H., Quon, G., Kundaje, A., Tsai, L.H., and Kellis, M. (2015). Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 518, 365-369.   DOI
3 Glajch, K.E., and Sadri-Vakili, G. (2015). Epigenetic mechanisms involved in huntington's disease pathogenesis. J. Huntingtons Dis. 4, 1-15.
4 Govindarajan, N., Agis-Balboa, C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. 26, 187-197.   DOI
5 Govindarajan, N., Rao, P., Burkhardt, S., Sananbenesi, F., Schluter, O.M., Bradke, F., Lu, J., and Fischer, A. (2013). Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol. Med. 5, 52-63.   DOI
6 Graff, J., Rei, D., Guan, J.S., Wang, W.Y., Seo, J., Hennig, K.M., Nieland, T.J., Fass, D.M., Kao, P.F., Kahn, M., et al. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483, 222-226.   DOI
7 Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401.   DOI
8 Gunawardena, S., Her, L.S., Brusch, R.G., Laymon, R.A., Niesman, I.R., Gordesky-Gold, B., Sintasath, L., Bonini, N.M., and Goldstein, L.S. (2003). Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40, 25-40.   DOI
9 Hendrickx, A., Pierrot, N., Tasiaux, B., Schakman, O., Kienlen-Campard, P., De Smet, C., and Octave, J.N. (2014). Epigenetic regulations of immediate early genes expression involved in memory formation by the amyloidprecursor protein of Alzheimer disease. PLoS One 9, e99467.   DOI
10 Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., et al. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 100, 2041-2046.   DOI
11 Hwang, S., Song, S., Hong, Y.K., Choi, G., Suh, Y.S., Han, S.Y., Lee, M., Park, S.H., Lee, J.H., Lee, S., et al. (2013). Drosophila DJ-1 decreases neural sensitivity to stress by negatively regulating Daxx-like protein through dFOXO. PLoS Genet. 9, e1003412.   DOI
12 Igarashi, S., Morita, H., Bennett, K.M., Tanaka, Y., Engelender, S., Peters, M.F., Cooper, J.K., Wood, J.D., Sawa, A., and Ross, C.A. (2003). Inducible PC12 cell model of Huntington's disease shows toxicity and decreased histone acetylation. Neuroreport 14, 565-568.   DOI
13 Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245-254.   DOI
14 Jiang, H., Poirier, M.A., Liang, Y., Pei, Z., Weiskittel, C.E., Smith, W.W., DeFranco, D.B., and Ross, C.A. (2006). Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol. Dis. 23, 543-551.   DOI
15 Koldamova, R., Schug, J., Lefterova, M., Cronican, A.A., Fitz, N.F., Davenport, F.A., Carter, A., Castranio, E.L., and Lefterov, I. (2014). Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol Dis. 63, 107-114.   DOI
16 Kilgore, M., Miller, C.A., Fass, D.M., Hennig, K.M., Haggarty, S.J., Sweatt, J.D., and Rumbaugh, G. (2010). Inhibitors of class1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880.   DOI
17 Ho, L., Guo, Y., Spielman, L., Petrescu, O., Haroutunian, V., Purohit, D., Czernik, A., Yemul, S., Aisen, P.S., Mohs, R., et al. (2001). Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neurosci. Lett. 298, 191-194.   DOI
18 Klevytska, A.M., Tebbenkamp, A.T., Savonenko, A.V., and Borchelt, D.R. (2010). Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease. J. Neuropathol. Exp. Neurol. 69, 396-404.   DOI
19 Korzus, E., Rosenfeld, M.G., and Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972.   DOI
20 Kweon, J.H., Kim, S., and Lee, S.B. (2016). The cellular basis of dendrite pathology in neurodegenerative diseases. BMB Rep. [Epub ahead of print].
21 Li, H., Li, S.H., Yu, Z.X., Shelbourne, P., and Li, X.J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473-8481.   DOI
22 Maurice, T., Duclot, F., Meunier, J., Naert, G., Givalois, L., Meffre, J., Celerier, A., Jacquet, C., Copois, V., Mechti, N., et al. (2008). Altered memory capacities and response to stress in p300/CBPassociated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 33, 1584-1602.   DOI
23 Lim, S., Chesser, A.S., Grima, J.C., Rappold, P.M., Blum, D., Przedborski, S., and Tieu, K. (2011). D-beta-hydroxybutyrate is protective in mouse models of Huntington's disease. PLoS One 6, e24620.   DOI
24 McCampbell, A., Taylor, J.P., Taye, A.A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197-2202.   DOI
25 Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P., and Kivipelto, M. (2010). Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9, 702-716.   DOI
26 Moumne, L., Campbell, K., Howland, D., Ouyang, Y., and Bates, G.P. (2012). Genetic knock-down of HDAC3 does not modify disease related phenotypes in a mouse model of Huntington's disease. PLoS One 7, e31080.   DOI
27 Ng, C.W., Yildirim, F., Yap, Y.S., Dalin, S., Matthews, B.J., Velez, P.J., Labadorf, A., Housman, D.E., and Fraenkel, E. (2013). Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc. Natl. Acad. Sci. USA 110, 2354-2359.   DOI
28 Nucifora, F.C., Jr., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423-2428.   DOI
29 Oliveira, J.M., Chen, S., Almeida, S., Riley, R., Goncalves, J., Oliveira, C.R., Hayden, M.R., Nicholls, D.G., Ellerby, L.M., and Rego, A.C. (2006). Mitochondrial-dependent $Ca^{2+}$ handling in Huntington's disease striatal cells: Effect of histone deacetylase inhibitors. J. Neurosci. 26, 11174-11186.   DOI
30 Ogawa, O., Zhu, X., Lee, H.G., Raina, A., Obrenovich, M.E., Bowser, R., Ghanbari, H.A., Castellani, R.J., Perry, G., and Smith, M.A. (2003). Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta. Neuropathol. 105, 524-528.
31 Oliveira, A.M., Wood, M.A., McDonough, C.B., and Abel, T. (2007). Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem. 14, 564-572.   DOI
32 Oliveira, A.M., Estevez, M.A., Hawk, J.D., Grimes, S., Brindle, P.K., and Abel, T. (2011). Subregion-specific p300 conditional knockout mice exhibit long-term memory impairments. Learn. Mem. 18, 161-169.   DOI
33 Pallos, J., Bodai, L., Lukacsovich, T., Purcell, J.M., Steffan, J.S., Thompson, L.M., and Marsh, J.L. (2008). Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 17, 3767-3775.   DOI
34 Robakis, N.K. (2003). An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid 10, 80-85.   DOI
35 Sadri-Vakili, G., and Cha, J.H. (2006). Mechanisms of disease:Histone modifications in Huntington's disease. Nat. Clin. Pract. Neurol. 2, 330-338.
36 Sadri-Vakili, G., Bouzou, B., Benn, C.L., Kim, M.O., Chawla, P., Overland, R.P., Glajch, K.E., Xia, E., Qiu, Z., Hersch, S.M., et al. (2007). Histones associated with downregulated genes are hypoacetylated in Huntington's disease models. Hum. Mol. Genet. 16, 1293-1306.   DOI
37 Steffan, J.S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.Z., Gohler, H., Wanker, E.E., Bates, G.P., Housman, D.E., and Thompson, L.M. (2000). The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763-6768.   DOI
38 Schon, E.A., and Przedborski, S. (2011). Mitochondria: the next (neurode)generation. Neuron 70, 1033-1053.   DOI
39 Snowdon, D.A., Greiner, L.H., Mortimer, J.A., Riley, K.P., Greiner, P.A., and Markesbery, W.R. (1997). Brain infarction and the clinical expression of Alzheimer's disease. The Nun Study. JAMA 277, 813-817.   DOI
40 Stack, E.C., Del Signore, S.J., Luthi-Carter, R., Soh, B.Y., Goldstein, D.R., Matson, S., Goodrich, S., Markey, A.L., Cormier, K., Hagerty, S.W., et al. (2007). Modulation of nucleosome dynamics in Huntington's disease. Hum. Mol. Genet. 16, 1164-1175.   DOI
41 Stokin, G.B., Lillo, B., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., Raman, R., Davies, P., Masliah, E., Williams, D.S., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer's diseases. Science 307, 1282-1288.   DOI
42 Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.   DOI
43 Sugars, K.L., and Rubinsztein, D.C. (2003). Transcriptional abnormalities in Huntington disease. Trends. Genet. 19, 233-238.   DOI
44 Thomas, B., Matson, S., Chopra, V., Sun, L., Sharma, S., Hersch, S., Rosas, H.D., Scherzer, C., Ferrante, R., and Matson, W. (2013). A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal. Biochem. 436, 112-120.   DOI
45 Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M., Lombardi, T.L., and Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111-119.   DOI
46 Vaquero, A., Loyola, A., and Reinberg, D. (2003). The constantly changing face of chromatin. Sci. Aging Knowledge Environ. 2003, RE4.
47 Vila, M., and Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 365-375.   DOI
48 Wirths, O., Weis, J., Szczygielski, J., Multhaup, G., and Bayer, T.A. (2006). Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer's disease. Acta. Neuropathol. 111, 312-319.   DOI
49 Wood, M.A., Attner, M.A., Oliveira, A.M., Brindle, P.K., and Abel, T. (2006). A transcription factor-binding domain of the coactivator CBP is essential for long-term memory and the expression of specific target genes. Learn. Mem. 13, 609-617.   DOI
50 Zhang, Z.Y., and Schluesener, H.J. (2013). Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J. Neuropathol. Exp. Neurol. 72, 178-185.   DOI
51 Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., Cataudella, T., Leavitt, B.R., Hayden, M.R., Timmusk, T., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet. 35, 76-83.   DOI
52 Bradley-Whitman, M.A., and Lovell, M.A. (2013). Epigenetic changes in the progression of Alzheimer's disease. Mech. Ageing. Dev. 134, 486-495.   DOI
53 Bobrowska, A., Donmez, G., Weiss, A., Guarente, L., and Bates, G. (2012). SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS One 7, e34805.   DOI
54 Bolton, S.J., Russelakis-Carneiro, M., Betmouni, S., and Perry, V.H. (1999). Non-nuclear histone H1 is upregulated in neurones and astrocytes in prion and Alzheimer's diseases but not in acute neurodegeneration. Neuropathol. Appl. Neurobiol. 25, 425-432.   DOI
55 Boutell, J.M., Thomas, P., Neal, J.W., Weston, V.J., Duce, J., Harper, P.S., and Jones, A.L. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet. 8, 1647-1655.   DOI
56 Britton, L.M., Gonzales-Cope, M., Zee, B.M., and Garcia, B.A. (2011). Breaking the histone code with quantitative mass spectrometry. Expert. Rev. Proteomics. 8, 631-643.   DOI
57 Cha, J.H. (2007). Transcriptional signatures in Huntington's disease. Prog. Neurobiol. 83, 228-248.   DOI
58 Agis-Balboa, R.C., Pavelka, Z., Kerimoglu, C., and Fischer, A. (2013). Loss of HDAC5 impairs memory function: implications for Alzheimer's disease. J. Alzheimers. Dis. 33, 35-44.
59 Chen, G., Zou, X., Watanabe, H., van Deursen, J.M., and Shen, J. (2010). CREB binding protein is required for both short-term and long-term memory formation. J. Neurosci. 30, 13066-13077.   DOI
60 Chiu, C.T., Liu, G., Leeds, P., and Chuang, D.M. (2011). Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington's disease. Neuropsychopharmacology 36, 2406-2421.   DOI
61 Bahari-Javan, S., Sananbenesi, F., and Fischer, A. (2014). Histoneacetylation: a link between Alzheimer's disease and posttraumatic stress disorder? Front. Neurosci. 8, 160.
62 Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21, 381-395.   DOI
63 Barrett, R.M., Malvaez, M., Kramar, E., Matheos, D.P., Arrizon, A., Cabrera, S.M., Lynch, G., Greene, R.W., and Wood, M.A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36, 1545-1556.   DOI
64 Bates, E.A., Victor, M., Jones, A.K., Shi, Y., and Hart, A.C. (2006). Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 26, 2830-2838.   DOI
65 Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., and Landfield, P.W. (2004). Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA 101, 2173-2178.   DOI
66 Bobrowska, A., Paganetti, P., Matthias, P., and Bates, G.P. (2011). Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease. PLoS One 6, e20696.   DOI
67 Cong, S.Y., Pepers, B.A., Evert, B.O., Rubinsztein, D.C., Roos, R.A., van Ommen, G.J., and Dorsman, J.C. (2005). Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol, Cell Neurosci. 30, 560-571.
68 Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P.R., Steinbusch, H.W., Coleman, P.D., Rutten, B.P., and van den Hove, D.L. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol. Aging 34, 2091-2099.   DOI
69 Citron, B.A., Dennis, J.S., Zeitlin, R.S., and Echeverria, V. (2008). Transcription factor Sp1 dysregulation in Alzheimer's disease. J. Neurosci. Res. 86, 2499-2504.   DOI
70 Condliffe, D., Wong, A., Troakes, C., Proitsi, P., Patel, Y., Chouliaras, L., Fernandes, C., Cooper, J., Lovestone, S., Schalkwyk, L., et al. (2014). Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain. Neurobiol. Aging 35, 1850-1854.   DOI
71 Coppede, F. (2010). One-carbon metabolism and Alzheimer's disease: focus on epigenetics. Curr. Genomics 11, 246-260.   DOI
72 Coppieters, N., Dieriks, B.V., Lill, C., Faull, R.L., Curtis, M.A., and Dragunow, M. (2014). Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol. Aging 35, 1334-1344.   DOI
73 Ding, H., Dolan, P.J., and Johnson, G.V. (2008). Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106, 2119-2130.   DOI
74 Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463.   DOI
75 Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L.H. (2007). Recovery of learning and memory after neuronal loss is associated with chromatin remodeling. Nature 447, 178-182.   DOI
76 Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harb Perspect. Biol. 6, a018200.   DOI
77 Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R., et al. (2003). Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J. Neurosci. 23, 9418-9427.   DOI
78 Fischer, L.R., Culver, D.G., Tennant, P., Davis, A.A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M.A., and Glass, J.D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 185, 232-240.   DOI
79 Forman, M.S., Trojanowski, J.Q., and Lee, V.M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055-1063.   DOI
80 Francis, Y.I., Fa, M., Ashraf, H., Zhang, H., Staniszewski, A., Latchman, D.S., and Arancio, O. (2009). Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J. Alzheimers Dis. 18, 131-139.   DOI
81 Frost, B., Hemberg, M., Lewis, J., and Feany, M.B. (2014). Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357-366.   DOI
82 Gardian, G., Browne, S.E., Choi, D.K., Klivenyi, P., Gregorio, J., Kubilus, J.K., Ryu, H., Langley, B., Ratan, R.R., Ferrante, R.J., et al. (2005). Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J. Biol. Chem. 280, 556-563.   DOI