Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0131

Tricyclic Antidepressants Amitriptyline and Desipramine Induced Neurotoxicity Associated with Parkinson's Disease  

Lee, Min-yeong (Department of Molecular Biology, Sejong University)
Hong, Seokheon (Department of Molecular Biology, Sejong University)
Kim, Nahmhee (Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
Shin, Ki Soon (Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
Kang, Shin Jung (Department of Molecular Biology, Sejong University)
Abstract
Recent studies report that a history of antidepressant use is strongly correlated with the occurrence of Parkinson' disease (PD). However, it remains unclear whether antidepressant use can be a causative factor for PD. In the present study, we examined whether tricyclic antidepressants amitriptyline and desipramine can induce dopaminergic cell damage, both in vitro and in vivo. We found that amitriptyline and desipramine induced mitochondria-mediated neurotoxicity and oxidative stress in SH-SY5Y cells. When injected into mice on a subchronic schedule, amitriptyline induced movement deficits in the pole test, which is known to detect nigrostriatal dysfunction. In addition, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta was reduced in amitriptyline-injected mice. Our results suggest that amitriptyline and desipramine may induce PD-associated neurotoxicity.
Keywords
amitriptyline; desipramine; neurotoxicity; Parkinson' disease; tricyclic antidepressant;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Haller, I., Lirk, P., Keller, C., Wang, G.K., Gerner, P., and Klimaschewski, L. (2007) .Differential neurotoxicity of tricyclic antidepressants and novel derivatives in vitro in a dorsal root ganglion cell culture model. Eur. J. Anaesthesiol. 24, 702-708.   DOI   ScienceOn
2 Han, S.I., Kim, Y.S., and Kim, T.H. (2008). Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10.   DOI   ScienceOn
3 Hatcher, J.M., Pennell, K.D., and Miller, G.W. (2008). Parkinson's disease and pesticides: a toxicological perspective. Trends Pharmacol. Sci. 29, 322-329.   DOI   ScienceOn
4 Higgins, S.C., and Pilkington, G.J. (2010). The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 30, 391-397.
5 Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., and Zalutsky, R. (2007). How common are the "common" neurologic disorders? Neurology 68, 326-337.   DOI   ScienceOn
6 Hroudova, J., and Fisar, Z. (2010). Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuroendocrinol. Lett. 31, 336-342.
7 Hroudova, J., and Fisar, Z. (2012). In vitro inhibition of mitochondrial respiratory rate by antidepressants. Toxicol. Lett. 213, 345-352.   DOI   ScienceOn
8 Huang, Y.Y., Peng, C.H., Yang, Y.P., Wu, C.C., Hsu, W.M., Wang, H.J., Chan, K.H., Chou, Y.P., Chen, S.J., and Chang, Y.L. (2007). Desipramine activated Bcl-2 expression and inhibited lipopolysaccharide-induced apoptosis in hippocampus-derived adult neural stem cells. J. Pharmacol. Sci. 104, 61-72.   DOI   ScienceOn
9 Karbowski, M., Norris, K.L., Cleland, M.M., Jeong, S.Y., and Youle, R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662.   DOI   ScienceOn
10 Kim, H.L., Ra, H., Kim, K.R., Lee, J.M., Im, H., and Kim, Y.H. (2015). Poly(ADP-ribosyl)ation of p53 contributes to TPEN-induced neuronal apoptosis. Mol. Cells 38, 312-317.   DOI   ScienceOn
11 Kitagawa, N., Oda, M., Nobutaka, I., Satoh, H., Totoki, T., and Morimoto, M. (2006). A proposed mechanism for amitriptyline neurotoxicity based on its detergent nature. Toxicol. Appl. Pharmacol. 217, 100-106.   DOI   ScienceOn
12 Lemasters, J.J. (1999). Mechanisms of hepatic toxicity - V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol.- Gastrointestin. Liver Physiol. 276, G1-G6.   DOI
13 Lirk, P., Haller, I., Hausott, B., Ingorokva, S., Deibl, M., Gerner, P., and Klimaschewski, L. (2006). The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity. Anesth. Analg. 102, 1728-1733.   DOI   ScienceOn
14 Lohr, J.B., Kuczenski, R., and Niculescu, A.B. (2003). Oxidative mechanisms and tardive dyskinesia. CNS Drugs 17, 47-62.   DOI   ScienceOn
15 Mammucari, C., and Rizzuto, R. (2010). Signaling pathways in mitochondrial dysfunction and aging. Mech. Ageing Dev. 131, 536-543.   DOI   ScienceOn
16 Matsuura, K., Kabuto, H., Makino, H., and Ogawa, N. (1997). Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J. Neurosci. Methods 73, 45-48.   DOI   ScienceOn
17 Mena, M.A., and de Yebenest, J.G. (2006). Drug-induced parkinsonism. Exp. Opin. Drug Safety 5, 759-771.   DOI   ScienceOn
18 Meredith, G.E., Sonsalla, P.K., and Chesselet, M.F. (2008). Animal models of Parkinson's disease progression. Acta Neuropathologica 115, 385-398.   DOI
19 Mena, M.A., Deyebenes, M.J.G., Tabernero, C., Casarejos, M.J., Pardo, B., and Deyebenes, J.G. (1995). Effects of calciumantagonists on the dopamine system. Clin. Neuropharmacol. 18, 410-426.   DOI   ScienceOn
20 Meredith, G.E., and Kang, U.J. (2006). Behavioral models of Parkinson's disease in rodents: A new look at an old problem. Mov. Disord. 21, 1595-1606.   DOI   ScienceOn
21 Mukhopadhyay, S., Panda, P.K., Sinha, N., Das, D.N., and Bhutia, S.K. (2014). Autophagy and apoptosis: where do they meet? Apoptosis 19, 555-566.   DOI   ScienceOn
22 Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y. (1985). A simple quantitative bradykinesia test in Mptp-treated mice. Res. Commun. Chem. Pathol. Pharmacol. 50, 435-441.
23 Peng, T.I., and Jou, M.J. (2010). Oxidative stress caused by mitochondrial calcium overload. Ann. N Y Acad. Sci. 1201, 183-188.   DOI   ScienceOn
24 Priyadarshi, A., Khuder, S.A., Schaub, E.A., and Priyadarshi, S.S. (2001). Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122-127.   DOI   ScienceOn
25 Rauch, F., Schwabe, K., and Krauss, J.K. (2010). Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav. Brain Res. 210, 46-53.   DOI   ScienceOn
26 Rollema, H., Skolnik, M., Dengelbronner, J., Igarashi, K., Usuki, E., and Castagnoli, N. (1994). Mpp(+)-like neurotoxicity of a pyridinium metabolite derived from Haloperidol - in-vivo microdialysis and in-vitro mitochondrial studies. J. Pharmacol. Exp. Ther. 268, 380-387.
27 Van Houten, B., Woshner, V., and Santos, J.H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst) 5, 145-152.   DOI   ScienceOn
28 Sheridan, C., Delivani, P., Cullen, S.P., and Martin, S.J. (2008). Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome c release. Mol. Cell 31, 570-585.   DOI   ScienceOn
29 Shin, H.W., and Chung, S.J. (2012). Drug-induced Parkinsonism. J. Clin. Neurol. 8, 15-21.   DOI   ScienceOn
30 Tsai, M.J., and Lee, E.H.Y. (1998). Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4-phenylpyridinium-induced toxicity. Free Rad. Biol. Med. 24, 705-713.   DOI   ScienceOn
31 Warner, C.H., Bobo, W., Warner, C., Reid, S., and Rachal, J. (2006). Antidepressant discontinuation syndrome. Am. Fam. Phys. 74, 449-456.   DOI   ScienceOn
32 Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861.   DOI
33 Zschocke, J., Zimmermann, N., Berning, B., Ganal, V., Holsboer, F., and Rein, T. (2011). Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacol. 36, 1754-1768.   DOI   ScienceOn
34 Benito-Leon, J., Louis, E.D., Bermejo-Pareja, F., and Cent, N.D.I. (2009). Risk of incident Parkinson's disease and parkinsonism in essential tremor: a population based study. J. Neurol. Neurosurg. Psychiatry 80, 423-425.
35 Alonso, A., Rodriguez, L.A.G., Logroscino, G., and Hernan, M.A. (2009). Use of antidepressants and the risk of Parkinson's disease:a prospective study. J. Neurol. Neurosurg. Psychiatry 80, 671-674.   DOI   ScienceOn
36 Arif, I.A., and Khan, H.A. (2010). Environmental toxins and Parkinson's disease: Putative roles of impaired electron transport chain and oxidative stress. Toxicol. Ind. Health 26, 121-128.   DOI   ScienceOn
37 Bautista-Ferrufino, M.R., Cordero, M.D., Sanchez-Alcazar, J.A., Illanes, M., Fernandez-Rodriguez, A., Navas, P., and de Miguel, M. (2011). Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver. Toxicol. Lett. 204, 32-37.   DOI   ScienceOn
38 Chan, H.N., Fam, J., and Ng, B.Y. (2009). Use of antidepressants in the treatment of chronic pain. Ann. Acad. Med. Singapore 38, 974-979.
39 Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007a). Theophylline, adenosine receptor antagonist prevents behavioral, biochemical and neurochemical changes associated with an animal model of tardive dyskinesia. Pharmacol. Rep. 59, 181-191.
40 Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007b). Neurochemical changes associated with chronic administration of typical antipsychotics and its relationship with tardive dyskinesia. Methods Find. Exp. Clin. Pharmacol. 29, 211-216.   DOI
41 Crome, P. (1986). Poisoning due to tricyclic antidepressant overdosage. Clinical presentation and treatment. Med. Toxicol. 1, 261-285.   DOI
42 Dick, F.D., De Palma, G., Ahmadi, A., Scott, N.W., Prescott, G.J., Bennett, J., Semple, S., Dick, S., Counsell, C., Mozzoni, P., et al. (2007). Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. Occup. Environ. Med. 64, 666-672.   DOI   ScienceOn
43 Estebe, J.P., and Myers, R.R. (2004). Amitriptyline neurotoxicity-Dose-related pathology after topical application to rat sciatic nerve. Anesthesiol. 100, 1519-1525.   DOI   ScienceOn
44 Foltynie, T., Sawcer, S., Brayne, C., and Barker, R.A. (2002). The genetic basis of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 363-370.   DOI
45 Freire, C., and Koifman, S. (2012). Pesticide exposure and Parkinson's disease: Epidemiological evidence of association. Neurotoxicol. 33, 947-971.   DOI   ScienceOn
46 Ghibelli, L., and Diederich, M. (2010). Multistep and multitask Bax activation. Mitochondrion 10, 604-613.   DOI   ScienceOn