Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0200

Epigenetic Regulation of Chondrocyte Catabolism and Anabolism in Osteoarthritis  

Kim, Hyeonkyeong (Department of Biological Sciences, Seoul National University)
Kang, Donghyun (Department of Biological Sciences, Seoul National University)
Cho, Yongsik (Department of Biological Sciences, Seoul National University)
Kim, Jin-Hong (Department of Biological Sciences, Seoul National University)
Abstract
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.
Keywords
cartilage; chondrocytes; epigenetics; metabolism; osteoarthritis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Poschl, E., Fidler, A., Schmidt, B., Kallipolitou, A., Schmid, E., and Aigner, T. (2005). DNA methylation is not likely to be responsible for aggrecan down regulation in aged or osteoarthritic cartilage. Ann. Rheumatic Dis. 64, 477-480.
2 Pradhan, S., and Esteve, P.-O. (2003). Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin. Immunol. 109, 6-16.   DOI   ScienceOn
3 Puenpatom, R.A., and Victor, T.W. (2009). Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad. Med. 121, 9-20.   DOI   ScienceOn
4 Razin, A. (1998). CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 17, 4905-4908.   DOI   ScienceOn
5 Reynard, L.N., Bui, C., Canty-Laird, E.G., Young, D.A., and Loughlin, J. (2011). Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum. Mol. Genet. 20, 3450-3460.   DOI   ScienceOn
6 Roach, H.I., Yamada, N., Cheung, K.S., Tilley, S., Clarke, N.M., Oreffo, R.O., Kokubun, S., and Bronner, F. (2005). Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52, 3110-3124.   DOI   ScienceOn
7 Rodova, M., Lu, Q., Li, Y., Woodbury, B.G., Crist, J.D., Gardner, B.M., Yost, J.G., Zhong, X.B., Anderson, H.C., and Wang, J. (2011). Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. J. Bone Miner. Res. 26, 1974-1986.   DOI   ScienceOn
8 Ruiz-Romero, C., Calamia, V., Mateos, J.s., Carreira, V., Martínez-Gomariz, M., Fernández, M.F., and Blanco, F.J. (2009). Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteomics 8, 172-189.   DOI   ScienceOn
9 Saito, T., Fukai, A., Mabuchi, A., Ikeda, T., Yano, F., Ohba, S., Nishida, N., Akune, T., Yoshimura, N., Nakagawa, T., et al. (2010). Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat. Med. 16, 678-686.   DOI   ScienceOn
10 Schipani, E., Ryan, H.E., Didrickson, S., Kobayashi, T., Knight, M., and Johnson, R.S. (2001). Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865-2876.
11 Schwer, B., and Verdin, E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104-112.   DOI   ScienceOn
12 Sesselmann, S., Soder, S., Voigt, R., Haag, J., Grogan, S., and Aigner, T. (2009). DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthritis Cartilage 17, 507-512.   DOI   ScienceOn
13 Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459.   DOI
14 Tateishi, K., Okada, Y., Kallin, E.M., and Zhang, Y. (2009). Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458, 757-761.   DOI   ScienceOn
15 Troeberg, L., and Nagase, H. (2012). Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim. Biophys. Acta 1824, 133-145.   DOI   ScienceOn
16 Wluka, A.E., Lombard, C.B., and Cicuttini, F.M. (2013). Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol. 9, 225-235.   DOI
17 Vega, R.B., Matsuda, K., Oh, J., Barbosa, A.C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J.M., Richardson, J.A., et al. (2004). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555-566.   DOI   ScienceOn
18 Wang, J., Gardner, B.M., Lu, Q., Rodova, M., Woodbury, B.G., Yost, J.G., Roby, K.F., Pinson, D.M., Tawfik, O., and Anderson, H.C. (2009). Transcription factor Nfat1 deficiency causes osteoarthritis through dysfunction of adult articular chondrocytes. J. Pathol. 219, 163-172.   DOI   ScienceOn
19 Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080.   DOI   ScienceOn
20 Yammani, R.R., and Loeser, R.F. (2012). Extracellular nicotinamide phosphoribosyltransferase (NAMPT/visfatin) inhibits insulin-like growth factor-1 signaling and proteoglycan synthesis in human articular chondrocytes. Arthritis Res. Ther. 14, R23.   DOI   ScienceOn
21 Yang, S., Kim, J., Ryu, J.H., Oh, H., Chun, C.H., Kim, B.J., Min, B.H., and Chun, J.S. (2010). Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. Nat. Med. 16, 687-693.   DOI   ScienceOn
22 Yang, S., Ryu, J.H., Oh, H., Jeon, J., Kwak, J.S., Kim, J.H., Kim, H.A., Chun, C.H., and Chun, J.S. (2015). NAMPT (visfatin), a direct target of hypoxia-inducible factor-2alpha, is an essential catabolic regulator of osteoarthritis. Ann. Rheumatic Dis. 74, 595-602.
23 Zhuo, Q., Yang, W., Chen, J., and Wang, Y. (2012). Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729-737.   DOI   ScienceOn
24 Yusuf, E., Ioan-Facsinay, A., Bijsterbosch, J., Klein-Wieringa, I., Kwekkeboom, J., Slagboom, P.E., Huizinga, T.W., and Kloppenburg, M. (2011). Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann. Rheumatic Dis. 70, 1282-1284.   DOI   ScienceOn
25 Zhong, H., May, M.J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol. Cell 9, 625-636.   DOI   ScienceOn
26 Zhong, H.M., Ding, Q.H., Chen, W.P., and Luo, R.B. (2013). Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-kappaB nuclear translocation. Int. Immunopharmacol. 17, 329-335.   DOI   ScienceOn
27 Zimmermann, P., Boeuf, S., Dickhut, A., Boehmer, S., Olek, S., and Richter, W. (2008). Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum. 58, 2743-2753.   DOI   ScienceOn
28 Buckwalter, J.A., and Brown, T.D. (2004). Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis. Clin. Orthop. Relat. Res. 2004, 7-16.
29 Blander, G., and Guarente, L. (2004). The Sir2 family of protein deacetylases. Ann. Rev. Biochem. 73, 417-435.   DOI   ScienceOn
30 Bordone, L., Motta, M.C., Picard, F., Robinson, A., Jhala, U.S., Apfeld, J., McDonagh, T., Lemieux, M., McBurney, M., Szilvasi, A., et al. (2006). Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31.
31 Bui, C., Barter, M.J., Scott, J.L., Xu, Y., Galler, M., Reynard, L.N., Rowan, A.D., and Young, D.A. (2012). cAMP response elementbinding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 26, 3000-3011.   DOI
32 Carlo, M.D., Jr., and Loeser, R.F. (2003). Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis. Rheum. 48, 3419-3430.   DOI   ScienceOn
33 Cai, L., and Tu, B.P. (2011). On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76, 195-202.
34 Caito, S., Rajendrasozhan, S., Cook, S., Chung, S., Yao, H., Friedman, A.E., Brookes, P.S., and Rahman, I. (2010). SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J. 24, 3145-3159.   DOI   ScienceOn
35 Campion, J., Milagro, F.I., and Martinez, J.A. (2009). Individuality and epigenetics in obesity. Obesity Rev. 10, 383-392.   DOI   ScienceOn
36 Carman, W.J., Sowers, M., Hawthorne, V.M., and Weissfeld, L.A. (1994). Obesity as a risk factor for osteoarthritis of the hand and wrist: a prospective study. Am. J. Epidemiol. 139, 119-129.
37 Chabane, N., Zayed, N., Afif, H., Mfuna-Endam, L., Benderdour, M., Boileau, C., Martel-Pelletier, J., Pelletier, J.P., Duval, N., and Fahmi, H. (2008). Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 16, 1267-1274.   DOI   ScienceOn
38 Chatterjee, T.K., Idelman, G., Blanco, V., Blomkalns, A.L., Piegore, M.G., Jr., Weintraub, D.S., Kumar, S., Rajsheker, S., Manka, D., Rudich, S.M., et al. (2011). Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J. Biol. Chem. 286, 27836-27847.   DOI   ScienceOn
39 Chen, T.H., Chen, L., Hsieh, M.S., Chang, C.P., Chou, D.T., and Tsai, S.H. (2006). Evidence for a protective role for adiponectin in osteoarthritis. Biochim. Biophys. Acta 1762, 711-718.   DOI   ScienceOn
40 Chen, R., Dioum, E.M., Hogg, R.T., Gerard, R.D., and Garcia, J.A. (2011). Hypoxia increases sirtuin 1 expression in a hypoxiainducible factor-dependent manner. J. Biol. Chem. 286, 13869-13878.   DOI   ScienceOn
41 Conaghan, P.G., Vanharanta, H., and Dieppe, P.A. (2005). Is progressive osteoarthritis an atheromatous vascular disease? Ann. Rheum. Dis. 64, 1539-1541.   DOI   ScienceOn
42 de Kreutzenberg, S.V., Ceolotto, G., Papparella, I., Bortoluzzi, A., Semplicini, A., Dalla Man, C., Cobelli, C., Fadini, G.P., and Avogaro, A. (2010). Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59, 1006-1015.   DOI   ScienceOn
43 de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S., and van Kuilenburg, A.B. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.   DOI
44 Dillon, C.F., Rasch, E.K., Gu, Q., and Hirsch, R. (2006). Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991-94. J. Rheumatol. 33, 2271-2279.
45 Duan, Y., Hao, D., Li, M., Wu, Z., Li, D., Yang, X., and Qiu, G. (2012). Increased synovial fluid visfatin is positively linked to cartilage degradation biomarkers in osteoarthritis. Rheumatol. Int. 32, 985-990.   DOI   ScienceOn
46 Dumond, H., Presle, N., Terlain, B., Mainard, D., Loeuille, D., Netter, P., and Pottie, P. (2003). Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 48, 3118-3129.   DOI   ScienceOn
47 Dvir-Ginzberg, M., Gagarina, V., Lee, E.J., and Hall, D.J. (2008). Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J. Biol. Chem. 283, 36300-36310.   DOI   ScienceOn
48 Findlay, D.M. (2007). Vascular pathology and osteoarthritis. Rheumatology 46, 1763-1768.   DOI   ScienceOn
49 Dvir-Ginzberg, M., Gagarina, V., Lee, E.J., Booth, R., Gabay, O., and Hall, D.J. (2011). Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes. Arthritis Rheum. 63, 2363-2373.   DOI   ScienceOn
50 Fernandez-Tajes, J., Soto-Hermida, A., Vazquez-Mosquera, M.E., Cortes-Pereira, E., Mosquera, A., Fernandez-Moreno, M., Oreiro, N., Fernandez-Lopez, C., Fernandez, J.L., Rego-Perez, I., et al. (2014). Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann. Rheum. Dis. 73, 668-677.   DOI
51 Fujita, N., Matsushita, T., Ishida, K., Kubo, S., Matsumoto, T., Takayama, K., Kurosaka, M., and Kuroda, R. (2011). Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J. Orthop. Res. 29, 511-515.   DOI   ScienceOn
52 Furumatsu, T., and Asahara, H. (2010). Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med. Okayama 64, 351-357.
53 Furumatsu, T., Tsuda, M., Yoshida, K., Taniguchi, N., Ito, T., Hashimoto, M., Ito, T., and Asahara, H. (2005). Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J. Biol. Chem. 280, 35203-35208.   DOI   ScienceOn
54 Gabay, O., Oppenhiemer, H., Meir, H., Zaal, K., Sanchez, C., and Dvir-Ginzberg, M. (2012). Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann. Rheum. Dis. 71, 613-616.   DOI
55 Gabay, O., Sanchez, C., Dvir-Ginzberg, M., Gagarina, V., Zaal, K.J., Song, Y., He, X.H., and McBurney, M.W. (2013). Sirtuin 1 enzymatic activity is required for cartilage homeostasis in vivo in a mouse model. Arthritis Rheum. 65, 159-166.   DOI   ScienceOn
56 Griffin, T.M., Huebner, J.L., Kraus, V.B., and Guilak, F. (2009). Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 60, 2935-2944.   DOI   ScienceOn
57 Gagarina, V., Gabay, O., Dvir-Ginzberg, M., Lee, E.J., Brady, J.K., Quon, M.J., and Hall, D.J. (2010). SirT1 enhances survival of human osteoarthritic chondrocytes by repressing protein tyrosine phosphatase 1B and activating the insulin-like growth factor receptor pathway. Arthritis Rheum. 62, 1383-1392.   DOI   ScienceOn
58 Gosset, M., Berenbaum, F., Salvat, C., Sautet, A., Pigenet, A., Tahiri, K., and Jacques, C. (2008). Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. Arthritis Rheum. 58, 1399-1409.   DOI   ScienceOn
59 Griffin, T.M., and Guilak, F. (2005). The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33, 195-200.   DOI   ScienceOn
60 Guilak, F. (2011). Biomechanical factors in osteoarthritis. Best practice & research. Clin. Rheumatol. 25, 815-823.
61 Haberland, M., Carrer, M., Mokalled, M.H., Montgomery, R.L., and Olson, E.N. (2010). Redundant control of adipogenesis by histone deacetylases 1 and 2. J. Biol. Chem. 285, 14663-14670.   DOI   ScienceOn
62 Hart, D.J., Doyle, D.V., and Spector, T.D. (1995). Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. J. Rheumatol. 22, 1118-1123.
63 Hashimoto, K., Oreffo, R.O., Gibson, M.B., Goldring, M.B., and Roach, H.I. (2009). DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum. 60, 3303-3313.   DOI   ScienceOn
64 Higashiyama, R., Miyaki, S., Yamashita, S., Yoshitaka, T., Lindman, G., Ito, Y., Sasho, T., Takahashi, K., Lotz, M., and Asahara, H. (2010). Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod. Rheumatol. 20, 11-17.   DOI
65 Hashimoto, K., Otero, M., Imagawa, K., de Andres, M.C., Coico, J.M., Roach, H.I., Oreffo, R.O., Marcu, K.B., and Goldring, M.B. (2013). Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J. Biol. Chem. 288, 10061-10072.   DOI   ScienceOn
66 Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321.   DOI   ScienceOn
67 Heinegard, D., and Saxne, T. (2011). The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 7, 50-56.   DOI
68 Hong, S., Derfoul, A., Pereira-Mouries, L., and Hall, D.J. (2009). A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J. 23, 3539-3552.   DOI   ScienceOn
69 Hong, E.H., Yun, H.S., Kim, J., Um, H.D., Lee, K.H., Kang, C.M., Lee, S.J., Chun, J.S., and Hwang, S.G. (2011). Nicotinamide phosphoribosyltransferase is essential for interleukin-1betamediated dedifferentiation of articular chondrocytes via SIRT1 and extracellular signal-regulated kinase (ERK) complex signaling. J. Biol. Chem. 286, 28619-28631.   DOI   ScienceOn
70 Honsawek, S., and Chayanupatkul, M. (2010). Correlation of plasma and synovial fluid adiponectin with knee osteoarthritis severity. Arch. Med. Res. 41, 593-598.   DOI   ScienceOn
71 Imagawa, K., de Andres, M.C., Hashimoto, K., Itoi, E., Otero, M., Roach, H.I., Goldring, M.B., and Oreffo, R.O. (2014). Association of reduced type IX collagen gene expression in human osteoarthritic chondrocytes with epigenetic silencing by DNA hypermethylation. Arthritis Rheumatol. 66, 3040-3051.   DOI   ScienceOn
72 Houard, X., Goldring, M.B., and Berenbaum, F. (2013). Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 15, 375.   DOI   ScienceOn
73 Huh, Y.H., Ryu, J.H., and Chun, J.S. (2007). Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J. Biol. Chem. 282, 17123-17131.   DOI   ScienceOn
74 Iliopoulos, D., Malizos, K.N., and Tsezou, A. (2007). Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann. Rheumatic Dis. 66, 1616-1621.   DOI   ScienceOn
75 Isabella Dalle - Donne, G.A., Marina Carini, Roberto Colombo, Ranieri Rossi, Aldo Milzani (2006). Protein carbonylation, cellular dysfunction, and disease progre. J. Cell. Mol. Med. 10, 389-406.   DOI
76 Iyer, A., Fairlie, D.P., and Brown, L. (2012). Lysine acetylation in obesity, diabetes and metabolic disease. Immunol. Cell Biol. 90, 39-46.   DOI   ScienceOn
77 Jallali, N., Ridha, H., Thrasivoulou, C., Underwood, C., Butler, P.E., and Cowen, T. (2005). Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage 13, 614-622.   DOI   ScienceOn
78 Kaelin, W.G., Jr., and McKnight, S.L. (2013). Influence of metabolism on epigenetics and disease. Cell 153, 56-69.   DOI   ScienceOn
79 Kim, K.I., Park, Y.S., and Im, G.I. (2013). Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J. Bone Miner. Res. 28, 1050-1060.   DOI   ScienceOn
80 Kang, E.H., Lee, Y.J., Kim, T.K., Chang, C.B., Chung, J.H., Shin, K., Lee, E.Y., Lee, E.B., and Song, Y.W. (2010). Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res. Ther. 12, R231.   DOI   ScienceOn
81 Kim, J.H., Jeon, J., Shin, M., Won, Y., Lee, M., Kwak, J.S., Lee, G., Rhee, J., Ryu, J.H., Chun, C.H., et al. (2014). Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156, 730-743.   DOI   ScienceOn
82 Kim, A.Y., Park, Y.J., Pan, X., Shin, K.C., Kwak, S.H., Bassas, A.F., Sallam, R.M., Park, K.S., Alfadda, A.A., Xu, A., et al. (2015). Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat. Commun. 6, 7585.   DOI   ScienceOn
83 Knudson, C.B., and Knudson, W. (2001). Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69-78.
84 Kornaat, P.R., Sharma, R., van der Geest, R.J., Lamb, H.J., Kloppenburg, M., Hellio le Graverand, M.P., Bloem, J.L., and Watt, I. (2009). Positive association between increased popliteal artery vessel wall thickness and generalized osteoarthritis: is OA also part of the metabolic syndrome? Skeletal Radiol. 38, 1147-1151.   DOI   ScienceOn
85 Koskinen, A., Juslin, S., Nieminen, R., Moilanen, T., Vuolteenaho, K., and Moilanen, E. (2011). Adiponectin associates with markers of cartilage degradation in osteoarthritis and induces production of proinflammatory and catabolic factors through mitogen-activated protein kinase pathways. Arthritis Res. Ther. 13, R184.   DOI
86 Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.   DOI   ScienceOn
87 Lefebvre, V., Li, P., and de Crombrugghe, B. (1998). A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 17, 5718-5733.   DOI   ScienceOn
88 Ku, J.H., Lee, C.K., Joo, B.S., An, B.M., Choi, S.H., Wang, T.H., and Cho, H.L. (2009). Correlation of synovial fluid leptin concentrations with the severity of osteoarthritis. Clin. Rheumatol. 28, 1431-1435.   DOI
89 Lago, R., Gomez, R., Otero, M., Lago, F., Gallego, R., Dieguez, C., Gomez-Reino, J.J., and Gualillo, O. (2008). A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes. Osteoarthritis Cartilage 16, 1101-1109.   DOI   ScienceOn
90 Lawrence, R.C., Felson, D.T., Helmick, C.G., Arnold, L.M., Choi, H., Deyo, R.A., Gabriel, S., Hirsch, R., Hochberg, M.C., Hunder, G.G., et al. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26-35.   DOI   ScienceOn
91 Ling, C., and Groop, L. (2009). Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58, 2718-2725.   DOI   ScienceOn
92 Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D.J., Cole, P., Yates, J., 3rd, et al. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273.   DOI   ScienceOn
93 Loeser, R.F. (2013). Aging processes and the development of osteoarthritis. Curr. Opin. Rheumatol. 25, 108-113.   DOI
94 Maly, M.R., Costigan, P.A., and Olney, S.J. (2005). Contribution of psychosocial and mechanical variables to physical performance measures in knee osteoarthritis. Phys. Ther. 85, 1318-1328.
95 Morano, A., Angrisano, T., Russo, G., Landi, R., Pezone, A., Bartollino, S., Zuchegna, C., Babbio, F., Bonapace, I.M., Allen, B., et al. (2014). Targeted DNA methylation by homologydirected repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804-821.   DOI   ScienceOn
96 Marwick, J.A., Kirkham, P.A., Stevenson, C.S., Danahay, H., Giddings, J., Butler, K., Donaldson, K., Macnee, W., and Rahman, I. (2004). Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am. J. Respir. Cell Mol. Biol. 31, 633-642.   DOI   ScienceOn
97 Matsuzaki, T., Matsushita, T., Takayama, K., Matsumoto, T., Nishida, K., Kuroda, R., and Kurosaka, M. (2014). Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann. Rheumatic Dis. 73, 1397-1404.   DOI   ScienceOn
98 Metallo, C.M., and Vander Heiden, M.G. (2010). Metabolism strikes back: metabolic flux regulates cell signaling. Genes Dev. 24, 2717-2722.   DOI   ScienceOn
99 Mundermann, A., Dyrby, C.O., and Andriacchi, T.P. (2005). Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum. 52, 2835-2844.   DOI   ScienceOn
100 Nagai, K., Matsushita, T., Matsuzaki, T., Takayama, K., Matsumoto, T., Kuroda, R., and Kurosaka, M. (2015). Depletion of SIRT6 causes cellular senescence, DNA damage, and telomere dysfunction in human chondrocytes. Osteoarthritis Cartilage 23, 1412-1420.   DOI   ScienceOn
101 Nasu, Y., Nishida, K., Miyazawa, S., Komiyama, T., Kadota, Y., Abe, N., Yoshida, A., Hirohata, S., Ohtsuka, A., and Ozaki, T. (2008). Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthritis Cartilage 16, 723-732.   DOI   ScienceOn
102 Oppenheimer, H., Kumar, A., Meir, H., Schwartz, I., Zini, A., Haze, A., Kandel, L., Mattan, Y., Liebergall, M., and Dvir-Ginzberg, M. (2014). Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation. J. Bone Miner. Res. 29, 348-360.   DOI
103 Nishikawa, K., Iwamoto, Y., Kobayashi, Y., Katsuoka, F., Kawaguchi, S., Tsujita, T., Nakamura, T., Kato, S., Yamamoto, M., Takayanagi, H., et al. (2015). DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an Sadenosylmethionine-producing metabolic pathway. Nat. Med. 21, 281-287.   DOI
104 Oliveria, S.A., Felson, D.T., Cirillo, P.A., Reed, J.I., and Walker, A.M. (1999). Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 10, 161-166.   DOI   ScienceOn
105 Oppenheimer, H., Gabay, O., Meir, H., Haze, A., Kandel, L., Liebergall, M., Gagarina, V., Lee, E.J., and Dvir-Ginzberg, M. (2012). 75-kd sirtuin 1 blocks tumor necrosis factor alphamediated apoptosis in human osteoarthritic chondrocytes. Arthritis Rheum. 64, 718-728.   DOI   ScienceOn
106 Osoata, G.O., Yamamura, S., Ito, M., Vuppusetty, C., Adcock, I.M., Barnes, P.J., and Ito, K. (2009). Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem. Biophys. Res. Commun. 384, 366-371.   DOI   ScienceOn
107 Otero, M., Lago, R., Lago, F., Reino, J.J., and Gualillo, O. (2005). Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: synergistic effect of leptin with interleukin-1. Arthritis Res. Ther. 7, R581-591.   DOI   ScienceOn
108 Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776.   DOI   ScienceOn