Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0258

Peripheral Serotonin: a New Player in Systemic Energy Homeostasis  

Namkung, Jun (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
Kim, Hail (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
Park, Sangkyu (Department of Biochemistry, College of Medicine, Catholic Kwandong University)
Abstract
Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment.
Keywords
adipose tissue; energy homeostasis; obesity; tryptophan hydroxylase; serotonin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nonogaki, K., Strack, A.M., Dallman, M.F., and Tecott, L.H. (1998). Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat. Med. 4, 1152-1156.   DOI
2 Oh, C.M., Namkung, J., Go, Y., Shong, K.E., Kim, K., Kim, H., Park, B.Y., Lee, H.W., Jeon, Y.H., Song, J., et al. (2015). Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat. Commun. 6, 6794.   DOI
3 Ohara-Imaizumi, M., Kim, H., Yoshida, M., Fujiwara, T., Aoyagi, K., Toyofuku, Y., Nakamichi, Y., Nishiwaki, C., Okamura, T., and Uchida, T. (2013). Serotonin regulates glucose-stimulated insulin secretion from pancreatic ${\beta}$ cells during pregnancy. Proc. Natl. Acad. Sci. USA 110, 19420-19425.   DOI
4 Rothwell, N.J., and Stock, M.J. (1987). Effect of diet and fenfluramine on thermogenesis in the rat: possible involvement of serotonergic mechanisms. Int. J. Obes. 11, 319-324.
5 Sakaguchi, T., and Bray, G.A. (1989). Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res. 492, 271-280.   DOI
6 Savelieva, K.V., Zhao, S., Pogorelov, V.M., Rajan, I., Yang, Q., Cullinan, E., and Lanthorn, T.H. (2008). Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS One 3, e3301.   DOI
7 Serretti, A., and Mandelli, L. (2010). Antidepressants and body weight: a comprehensive review and meta-analysis. J. Clin. Psychiatry 71, 1259-1272.   DOI
8 Sohn, J.W., Elmquist, J.K., and Williams, K.W. (2013). Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504-512.   DOI
9 Sumara, G., Sumara, O., Kim, Jason K., and Karsenty, G. (2012). Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab. 16, 588-600.   DOI
10 Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., and Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374, 542-546.   DOI
11 Uchida-Kitajima, S., Yamauchi, T., Takashina, Y., Okada-Iwabu, M., Iwabu, M., Ueki, K., and Kadowaki, T. (2008). 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue. FEBS Lett. 582, 3037-3044.   DOI
12 Vickers, S.P., Clifton, P.G., Dourish, C.T., and Tecott, L.H. (1999). Reduced satiating effect of d-fenfluramine in serotonin 5-HT2C receptor mutant mice. Psychopharmacology 143, 309-314.   DOI
13 Wade, P.R., Chen, J., Jaffe, B., Kassem, I.S., Blakely, R.D., and Gershon, M.D. (1996). Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci. 16, 2352-2364.   DOI
14 Walther, D.J., and Bader, M. (2003). A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 66, 1673-1680.   DOI
15 Watanabe, H., Akasaka, D., Ogasawara, H., Sato, K., Miyake, M., Saito, K., Takahashi, Y., Kanaya, T., Takakura, I., Hondo, T., et al. (2010). Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover. Endocrinology 151, 4776-4786.   DOI
16 Yadav, V.K., Ryu, J.H., Suda, N., Tanaka, K.F., Gingrich, J.A., Schutz, G., Glorieux, F.H., Chiang, C.Y., Zajac, J.D., Insogna, K.L., et al. (2008). Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825-837.   DOI
17 Zhou, L., Sutton, G.M., Rochford, J.J., Semple, R.K., Lam, D.D., Oksanen, Laura J., Thornton-Jones, Z.D., Clifton, P.G., Yueh, C.-Y., Evans, M.L., et al. (2007). Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab. 6, 398-405.   DOI
18 Yamakawa, J., Takahashi, T., Itoh, T., Kusaka, K., Kawaura, K., Wang, X.Q., and Kanda, T. (2003). A novel serotonin blocker, sarpogrelate, increases circulating adiponectin levels in diabetic patients with arteriosclerosis obliterans. Diabetes Care 26, 2477-2478.   DOI
19 Young, S.N., and Leyton, M. (2002). The role of serotonin in human mood and social interaction: Insight from altered tryptophan levels. Pharmacol. Biochem. Behav. 71, 857-865.   DOI
20 Zhang, X., Beaulieu, J.M., Sotnikova, T.D., Gainetdinov, R.R., and Caron, M.G. (2004). Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305, 217.   DOI
21 Bouwknecht, J.A., van der Gugten, J., Hijzen, T.H., Maes, R.A., Hen, R., and Olivier, B. (2001). Male and female 5-HT(1B) receptor knockout mice have higher body weights than wildtypes. Physiol. Behav. 74, 507-516.   DOI
22 Alenina, N., Kikic, D., Todiras, M., Mosienko, V., Qadri, F., Plehm, R., Boye, P., Vilianovitch, L., Sohr, R., Tenner, K., et al. (2009). Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc. Natl. Acad. Sci. USA 106, 10332-10337.   DOI
23 Arase, K., Sakaguchi, T., and Bray, G.A. (1988). Effect of fenfluramine on sympathetic firing rate. Pharmacol. Biochem. Behav. 29, 675-680.   DOI
24 Bertrand, R.L., Senadheera, S., Markus, I., Liu, L., Howitt, L., Chen, H., Murphy, T.V., Sandow, S.L., and Bertrand, P.P. (2011). A Western diet increases serotonin availability in rat small intestine. Endocrinology 152, 36-47.   DOI
25 Brand, T., and Anderson, G.M. (2011). The measurement of plateletpoor plasma serotonin: a systematic review of prior reports and recommendations for improved analysis. Clin. Chem. 57, 1376-1386.   DOI
26 Breisch, S.T., Zemlan, F.P., and Hoebel, B.G. (1976). Hyperphagia and obesity following serotonin depletion by intraventricular pchlorophenylalanine. Science 192, 382-385.   DOI
27 Collins, S., Yehuda-Shnaidman, E., and Wang, H. (2010). Positive and negative control of Ucp1 gene transcription and the role of [beta]-adrenergic signaling networks. Int. J. Obes. 34, S28-S33.   DOI
28 Feldman, J.M. (1988). Effect of the monoamine oxidase inhibitors clorgyline and pargyline on the hyperphagia of obese mice. Behav. Brain Res. 29, 147-158.   DOI
29 Colman, E., Golden, J., Roberts, M., Egan, A., Weaver, J., and Rosebraugh, C. (2012). The FDA's assessment of two drugs for chronic weight management. N Eng. J. Med. 367, 1577-1579.   DOI
30 Crane, J.D., Palanivel, R., Mottillo, E.P., Bujak, A.L., Wang, H., Ford, R.J., Collins, A., Blumer, R.M., Fullerton, M.D., Yabut, J.M., et al. (2015). Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 21, 166-172.   DOI
31 Gershon, M.D., and Ross, L.L. (1966). Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J. Physiol. 186, 477-492.   DOI
32 Gershon, M.D., and Tack, J. (2007). The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397-414.   DOI
33 Gres, S., Canteiro, S., Mercader, J., and Carpene, C. (2013). Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol. Nutr. Food Res. 57, 1089-1099.   DOI
34 Gutknecht, L., Araragi, N., Merker, S., Waider, J., Sommerlandt, F.M., Mlinar, B., Baccini, G., Mayer, U., Proft, F., Hamon, M., et al. (2012). Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification. PLoS One 7, e43157.   DOI
35 Halford, J.C.G., and Blundell, J.E. (1996). The 5-HT1B receptor agonist CP-94,253 reduces food intake and preserves the behavioural satiety sequence. Physiol. Behav. 60, 933-939.   DOI
36 Heisler, L.K., Kanarek, R.B., and Gerstein, A. (1997). Fluoxetine decreases fat and protein intakes but not carbohydrate intake in male rats. Pharmacol. Biochem. Behav. 58, 767-773.   DOI
37 Hannon, J., and Hoyer, D. (2008). Molecular biology of 5-HT receptors. Behav. Brain Res. 195, 198-213.   DOI
38 Haub, S., Ritze, Y., Ladel, I., Saum, K., Hubert, A., Spruss, A., Trautwein, C., and Bischoff, S.C. (2011). Serotonin receptor type 3 antagonists improve obesity-associated fatty liver disease in mice. J. Pharmacol. Exp. Ther. 339, 790-798.   DOI
39 Heal, D.J., Aspley, S., Prow, M.R., Jackson, H.C., Martin, K.F., and Cheetham, S.C. (1998). Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate it from d-amphetamine and d-fenfluramine. Int. J. Obes. Relat. Metab. Disord. 22 Suppl 1, S18-28; discussion S29.
40 Heisler, L.K., Cowley, M.A., Tecott, L.H., Fan, W., Low, M.J., Smart, J.L., Rubinstein, M., Tatro, J.B., Marcus, J.N., Holstege, H., et al. (2002). Activation of central melanocortin pathways by fenfluramine. Science 297, 609-611.   DOI
41 Kennett, G.A., and Curzon, G. (1988). Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU 24969 only requires 5-HT1B receptors. Psychopharmacology (Berl) 96, 93-100.   DOI
42 Keszthelyi, D., Troost, F.J., and Masclee, A.A.M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol. Motil. 21, 1239-1249.   DOI
43 Kim, H., Toyofuku, Y., Lynn, F.C., Chak, E., Uchida, T., Mizukami, H., Fujitani, Y., Kawamori, R., Miyatsuka, T., Kosaka, Y., et al. (2010). Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16, 804-808.   DOI
44 Lam, D.D., and Heisler, L.K. (2007). Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Exp. Rev. Mol. Med. 9, 1-24.
45 Kim, H.J., Kim, J.H., Noh, S., Hur, H.J., Sung, M.J., Hwang, J.T., Park, J.H., Yang, H.J., Kim, M.S., Kwon, D.Y., et al. (2011). Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 10, 722-731.   DOI
46 Kim, K., Oh, C.M., Ohara-Imaizumi, M., Park, S., Namkung, J., Yadav, V.K., Tamarina, N.A., Roe, M.W., Philipson, L.H., Karsenty, G., et al. (2015). Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state. Endocrinology 156, 444-452.   DOI
47 Kinoshita, M., Ono, K., Horie, T., Nagao, K., Nishi, H., Kuwabara, Y., Takanabe-Mori, R., Hasegawa, K., Kita, T., and Kimura, T. (2010). Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol. Endocrinol. 24, 1978-1987.   DOI
48 Lam, D.D., Przydzial, M.J., Ridley, S.H., Yeo, G.S.H., Rochford, J.J., O'Rahilly, S., and Heisler, L.K. (2008). Serotonin 5-HT2C receptor agonist rromotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149, 1323-1328.   DOI
49 Lam, D.D., Garfield, A.S., Marston, O.J., Shaw, J., and Heisler, L.K. (2010). Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 97, 84-91.   DOI
50 Le Feuvre, R.A., Aisenthal, L., and Rothwell, N.J. (1991). Involvement of corticotrophin releasing factor (CRF) in the thermogenic and anorexic actions of serotonin (5-HT) and related compounds. Brain Res. 555, 245-250.   DOI
51 Merens, W., Willem Van der Does, A.J., and Spinhoven, P. (2007). The effects of serotonin manipulations on emotional information processing and mood. J. Affect. Disord. 103, 43-62.   DOI
52 Lesurtel, M., Graf, R., Aleil, B., Walther, D.J., Tian, Y., Jochum, W., Gachet, C., Bader, M., and Clavien, P.A. (2006). Platelet-derived serotonin mediates liver regeneration. Science 312, 104-107.   DOI
53 Martin, C.K., Redman, L.M., Zhang, J., Sanchez, M., Anderson, C.M., Smith, S.R., and Ravussin, E. (2010). Lorcaserin, a 5-HT(2C) receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J. Clin. Endocrinol. Metab. 96, 837-845.
54 Matsuda, M., Imaoka, T., Vomachka, A.J., Gudelsky, G.A., Hou, Z., Mistry, M., Bailey, J.P., Nieport, K.M., Walther, D.J., Bader, M., et al. (2004). Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev. Cell 6, 193-203.   DOI
55 Monti, J.M. (2011). Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15, 269-281.   DOI
56 Moore, M.C., DiCostanzo, C.A., Dardevet, D., Lautz, M., Farmer, B., Neal, D.W., and Cherrington, A.D. (2004). Portal infusion of a selective serotonin reuptake inhibitor enhances hepatic glucose disposal in conscious dogs. Am. J. Physiol. Endocrinol. Metab. 287, E1057-1063.   DOI
57 Murphy, D.L., and Lesch, K.P. (2008). Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci. 9, 85-96.
58 Nomura, S., Shouzu, A., Omoto, S., Nishikawa, M., and Iwasaka, T. (2005). 5-HT2A receptor antagonist increases circulating adiponectin in patients with type 2 diabetes. Blood Coagul. Fibrinolysis 16, 423-428.   DOI