Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0168

High-Dose Nicotinamide Suppresses ROS Generation and Augments Population Expansion during CD8+ T Cell Activation  

Choi, Ho Jin (Department of Life Science, University of Seoul)
Jang, So-Young (Department of Life Science, University of Seoul)
Hwang, Eun Seong (Department of Life Science, University of Seoul)
Abstract
During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on $CD8^+$ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.
Keywords
mitochondria; nicotinamide; ROS; T cell activation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X., and Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 105, 14447-14452.   DOI   ScienceOn
2 Beiqing, L., Chen, M., and Whisler, R.L. (1996). Sublethal levels of oxidative stress stimulate transcriptional activation of c-jun and suppress IL-2 promoter activation in Jurkat T cells. J. Immunol. 157, 160-169.
3 Bell, B.D., Leverrier, S., Weist, B.M., Newton, R.H., Arechiga, A.F., Luhrs, K.A., Morrissette, N.S., and Walsh, C.M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. USA 105, 16677-16682.   DOI   ScienceOn
4 Bjorkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614.   DOI   ScienceOn
5 Brennan, P., Babbage, J.W., Burgering, B.M.T., Groner, B., Reif, K., and Cantrell, D.A. (1997). Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7, 679-689.   DOI   ScienceOn
6 Brenner, D., Krammer, P.H., and Arnold, R. (2008). Concepts of activated T cell death. Crit. Rev. Oncol. Hematol. 66, 52-64.   DOI   ScienceOn
7 Chong, Z.-Z., Lin, S.-H., Li, F., and Maiese, K. (2005). The sirtuin inhibitor nicotinamide enhances neuronal cell survival during acute anoxic injury through AKT, BAD, PARP, and mitochondrial associated "anti-apoptotic" pathways. Curr. Neurovasc. Res. 2, 271-285.   DOI   ScienceOn
8 Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233-249.   DOI
9 D'Souza, A.D., Parikh, N., Kaech, S.M., and Shadel, G.S. (2007). Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation. Mitochondrion 7, 374-385.   DOI   ScienceOn
10 Effros, R.B., Dagarag, M., Spaulding, C., and Man, J. (2005). The role of CD8 T-cell replicative senescence in human aging. Immunol. Rev. 205, 147-157.   DOI   ScienceOn
11 Giannakou, M.E., and Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends Cell Biol. 14, 408-412.   DOI   ScienceOn
12 Gomes, L.C., and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta. 1833, 205-212.   DOI   ScienceOn
13 Grayson, J.M., Laniewski, N.G., Lanier, J.G., and Ahmed, R. (2003). Mitochondrial potential and reactive oxygen intermediates in antigen-specific CD8+ T cells during viral infection. J. Immunol. 170, 4745-4751.   DOI
14 Hildeman, D.A., Mitchell, T., Kappler, J., and Marrack, P. (2003b). T cell apoptosis and reactive oxygen species. J. Clin. Invest. 111, 575-581.   DOI
15 Hildeman, D.A., Mitchell, T., Teague, T.K., Henson, P., Day, B.J., Kappler, J., and Marrack, P.C. (1999). Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735-744.   DOI   ScienceOn
16 Hildeman, D.A., Zhu, Y., Mitchell, T.C., Bouillet, P., Strasser, A., Kappler, J., and Marrack, P. (2002). Activated T cell death in vivo mediated by proapoptotic Bcl-2 family member Bim. Immunity 16, 759-767.   DOI   ScienceOn
17 Hildeman, D.A., Mitchell, T., Aronow, B., Wojciechowski, S., Kappler, J., and Marrack, P. (2003a). Control of Bcl-2 expression by reactive oxygen species. Proc. Natl. Acad. Sci. USA 100, 15035-15040.   DOI   ScienceOn
18 Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., et al. (2010). SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125.   DOI   ScienceOn
19 Hogan, P.G., Hogan, P.G., Chen, L., and Chen, L. (2003). Transcriptional regulation by calcium, calcineurin. NFAT. Genes Dev. 17, 2205-2232.   DOI   ScienceOn
20 Hoyos, B., Ballard, D.W., Bohnlein, E., Siekevitz, M., and Greene, W.C. (1989). Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science 244, 457-460.   DOI
21 Jambrina, E., Alonso, R., Alcalde, M., Rodríguez, M. del C., Serrano, A., Martinez-A., C., Garcia-Sancho, J., and Izquierdo, M. (2003). Calcium influx through receptor-operated channel induces mitochondria-triggered paraptotic cell death. J. Biol. Chem. 278, 14134-14145.   DOI   ScienceOn
22 Kang, H.T., Lee, H.I., and Hwang, E.S. (2006). Nicotinamide extends replicative lifespan of human cells. Aging Cell 5, 423-436.   DOI   ScienceOn
23 Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314.   DOI   ScienceOn
24 Kaminski, M., Kiessling, M., Süss, D., Krammer, P.H., and Gülow, K. (2007). Novel role for mitochondria: protein kinase Cthetadependent oxidative signaling organelles in activation-induced T-cell death. Mol. Cell. Biol. 27, 3625-3639.   DOI   ScienceOn
25 Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438.   DOI   ScienceOn
26 Klionsky, D.J., Elazar, Z., Seglen, P.O., and Rubinsztein, D.C. (2008). Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 4, 849-850.   DOI
27 Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., Roodman, D.G., Windle, J.J., Zhang, X., and Lu, B. (2012). Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ. 19, 144-152.   DOI   ScienceOn
28 Kwak, J.Y., Ham, H.J., Kim, C.M., and Hwang, E.S. (2015). Nicotinamide exerts antioxidative effects on senescent cells. Mol. Cells 38, 229-235   DOI   ScienceOn
29 Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379.   DOI   ScienceOn
30 Liu, G., Foster, J., Manlapaz Ramos, P., and Olivera, B.M. (1982). Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 152, 1111-1116.
31 Marte, B.M., and Downward, J. (1997). PKB/Akt: Connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem. Sci. 22, 355-358.   DOI   ScienceOn
32 Lyons, A.B., and Parish, C.R. (1994). Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131-137.   DOI   ScienceOn
33 Ma, Y., Nie, H., Chen, H., Li, J., Hong, Y., Wang, B., Wang, C., Zhang, J., Cao, W., Zhang, M., et al. (2015). $NAD^+$/NADH metabolism and $NAD^+$-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications. Curr. Med. Chem. 22, 1239-1247.   DOI
34 Maiese, K., Chong, Z.Z., Hou, J., and Shang, C. (2009). The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 14, 3446-3485.   DOI   ScienceOn
35 Meuer, S.C., Hussey, R.E., Cantrell, D.A., Hodgdon, J.C., Schlossman, S.F., Smith, K.A., and Reinherz, E.L. (1984). Triggering of the T3-Ti antigen-receptor complex results in clonal T-cell proliferation through an interleukin 2-dependent autocrine pathway. Proc. Natl. Acad. Sci. USA 81, 1509-1513.   DOI
36 Qiu, X., Brown, K., Hirschey, M.D., Verdin, E., and Chen, D. (2010). Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662-667.   DOI   ScienceOn
37 Russell, J.H. (1995). Activation-induced death of mature T cells in the regulation of immune responses. Curr. Opin. Immunol. 7, 382-388.   DOI   ScienceOn
38 Shore, D. (2000). The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc. Natl. Acad. Sci. USA 97, 14030-14032.   DOI   ScienceOn
39 Stranges, P.B., Watson, J., Cooper, C.J., Choisy-Rossi, C.M., Stonebraker, A.C., Beighton, R.A., Hartig, H., Sundberg, J.P., Servick, S., Kaufmann, G., et al. (2007). Elimination of antigenpresenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629-641.   DOI   ScienceOn
40 Someya, S., Yu, W., Hallows, W.C., Xu, J., Vann, J.M., Leeuwenburgh, C., Tanokura, M., Denu, J.M., and Prolla, T.A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under Caloric Restriction. Cell 143, 802-812.   DOI   ScienceOn