Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0029

MTA1 Overexpression Induces Cisplatin Resistance Innasopharyngeal Carcinoma by Promoting Cancer Stem Cells Properties  

Feng, Xiaohua (Department of Otolaryngology, General Hospital of Guangzhou Command)
Zhang, Qianbing (Cancer Institute of Southern Medical University)
Xia, Songxin (Department of stomatology, Guangdong Provincial Hospital of Traditional Chinese Medicine)
Xia, Bing (Department of Cardiology, 458th Hospital of People's Liberation Army)
Zhang, Yue (Department of Radiotherapy, Nanfang Hospital of Southern Medical University)
Deng, Xubin (Department of Radiotherapy, Nanfang Hospital of Southern Medical University)
Su, Wenmei (Cancer Center of Affiliated Hospital of Guangdong Medical College)
Huang, Jianqing (Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU))
Abstract
Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.
Keywords
cancer stem cell; cisplatin-resistance; MTA1; nasopharyngeal carcinoma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
2 Song, Q., Zhang, H., Wang, M., Song, W., Ying, M., Fang, Y., Li, Y., Chao, Y., and Zhu, X. (2013). MTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo. J.Exp.Clin.Cancer Res. 32, 54.   DOI   ScienceOn
3 Spano, J.P., Busson, P., Atlan, D., Bourhis, J., Pignon, J.P., Esteban, C., and Armand, J.P. (2003). Nasopharyngeal carcinomas: an update. Eur. J.Pharmacol. 39, 2121-2135.
4 Venkatesha, V.A., Parsels, L.A., Parsels, J.D., Zhao, L., Zabludoff, S.D., Simeone, D.M., Maybaum, J., Lawrence, T.S., and Morgan, M.A. (2012). Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia 14, 519-525.   DOI
5 Vinogradov, S., and Wei, X. (2012). Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7, 597-615.   DOI
6 Wang, H., Zhang, G., Zhang, H., Zhang, F., Zhou, B., Ning, F., Wang, H.S., Cai, S.H., and Du, J. (2014). Acquisition of epithelialmesenchymal transition phenotype and cancer stem cell-like properties in cisplatin-resistant lung cancer cells through AKT/beta-catenin/Snail signaling pathway. Eur. J. Pharmacol. 723, 156-166.   DOI   ScienceOn
7 Zhang, Y., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Bird, A., and Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924-1935.   DOI   ScienceOn
8 Liu, A.Y., Cai, Y., Mao, Y., Lin, Y., Zheng, H., Wu, T., Huang, Y., Fang, X., Lin, S., Feng, Q., et al. (2014). Twist2 promotes self-renewal of liver cancer stem-like cells by regulating CD24. Carcinogenesis 35, 537-545.   DOI   ScienceOn
9 Morais, C., Gobe, G., Johnson, D.W., and Healy, H. (2010). Inhibition of nuclear factor kappa B transcription activity drives a synergistic effect of pyrrolidine dithiocarbamate and cisplatin for treatment of renal cell carcinoma. Apoptosis 15, 412-425.   DOI
10 Ma, B.B., Lui, V.W., Hui, E.P., Lau, C.P., Ho, K., Ng, M.H., Cheng, S.H., Tsao, S.W., and Chan, A.T. (2010). The activity of mTOR inhibitor RAD001 (everolimus) in nasopharyngeal carcinoma and cisplatin-resistant cell lines. Invest. New Drugs 28, 413-420.   DOI
11 Nagaraj, S.R., Shilpa, P., Rachaiah, K., and Salimath, B.P. (2013). Crosstalk between VEGF and MTA1 signaling pathways contrib-ute to aggressiveness of breast carcinoma. Mol. Carcinog. [Epub ahead of print].
12 Reddy, S.D., Pakala, S.B., Molli, P.R., Sahni, N., Karanam, N.K., Mudvari, P., and Kumar, R. (2012). Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J. Biol.Chem. 287, 27843-27850.   DOI
13 Salot, S., and Gude, R. (2013). MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur. J.Cancer 49, 492-499.   DOI   ScienceOn
14 Serin, M., Erkal, H.S., and Cakmak, A. (1999). Radiation therapy and concurrent cisplatin in management of locoregionally advanced nasopharyngeal carcinomas. Acta Oncol. 38, 1031-1035.   DOI
15 Shafee, N., Smith, C.R., Wei, S., Kim, Y., Mills, G.B., Hortobagyi, G.N., Stanbridge, E.J., and Lee, E.Y. (2008). Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 68, 3243-3250.   DOI   ScienceOn
16 Kumar, R., Wang, R.A., and Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Semi.Oncol. 30, 30-37.   DOI
17 Barr, M.P., Gray, S.G., Hoffmann, A.C., Hilger, R.A., Thomale, J., O’Flaherty, J.D., Fennell, D.A., Richard, D., O’Leary, J.J., and O’Byrne, K.J. (2013). Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS One 8, e54193.   DOI
18 Bui-Nguyen, T.M., Pakala, S.B., Sirigiri, R.D., Xia, W., Hung, M.C., Sarin, S.K., Kumar, V., Slagle, B.L., and Kumar, R. (2010). NFkappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene 29, 1179-1189.   DOI   ScienceOn
19 Godwin, P., Baird, A.M., Heavey, S., Barr, M.P., O'Byrne, K.J., and Gately, K. (2013). Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front.Oncol. 3, 120.
20 Kumar, R., Balasenthil, S., Pakala, S.B., Rayala, S.K., Sahin, A.A., and Ohshiro, K. (2010). Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res. 70, 6598-6608.   DOI   ScienceOn
21 Li, D.Q., Pakala, S.B., Nair, S.S., Eswaran, J., and Kumar, R. (2012a). Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res. 72, 387-394.   DOI
22 Donnenberg, V.S., and Donnenberg, A.D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J.Clin.Pharmacol. 45, 872-877.   DOI
23 Li, Y., Huang, W., Huang, S., Du, J., and Huang, C. (2012b). Screening of anti-cancer agent using zebrafish: comparison with the MTT assay. Biochem.Biophys.Res.Commun. 422, 85-90.   DOI   ScienceOn
24 Ma, L., Zhang, G., Miao, X.B., Deng, X.B., Wu, Y., Liu, Y., Jin, Z.R., Li, X.Q., Liu, Q.Z., Sun, D.X., et al. (2013). Cancer stem-like cell properties are regulated by EGFR/AKT/beta-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J. 280, 2027-2041.   DOI   ScienceOn