Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0108

A Tale of Two Models: Mouse and Zebrafish as Complementary Models for Lymphatic Studies  

Kim, Jun-Dae (Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine)
Jin, Suk-Won (Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine)
Abstract
Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.
Keywords
lymphatic endothelial cell (LEC); lymphatic vessels; lymphedema; zebrafish;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 van Impel, A, Zhao, Z, Hermkens, DM, Roukens, MG, Fischer, JC, Peterson-Maduro, J, Duckers, H, Ober, EA, Ingham, PW, and Schulte-Merker, S (2014). Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development. 141, 1228-1238.   DOI   ScienceOn
2 Wiley, DM, Kim, JD, Hao, J, Hong, CC, Bautch, VL, and Jin, SW (2011). Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol. 13, 686-692.
3 Wilkinson, RN, and van Eeden, FJ (2014). The zebrafish as a model of vascular development and disease. Prog Mol Biol Transl Sci. 124, 93-122.   DOI   ScienceOn
4 Yang, Y, García-Verdugo, JM, Soriano-Navarro, M, Srinivasan, RS, Scallan, JP, Singh, MK, Epstein, JA, and Oliver, G (2012). Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 120, 2340-2348.   DOI
5 Yaniv, K, Isogai, S, Castranova, D, Dye, L, Hitomi, J, and Weinstein, BM (2006). Live imaging of lymphatic development in the zebrafish. Nat Med. 12, 711-716.   DOI   ScienceOn
6 Yoon, CM, Hong, BS, Moon, HG, Lim, S, Suh, PG, Kim, YK, Chae, CB, and Gho, YS (2008). Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood. 112, 1129-1138.   DOI   ScienceOn
7 Zuther, JE, and Norton, S (2012). Lymphedema management: the comprehensive guide for practitioners (Thieme, New York)
8 Pistocchi, A, Bartesaghi, S, Cotelli, F, and Del Giacco, L (2008). Identification and expression pattern of zebrafish prox2 during embryonic development. Dev Dyn. 237, 3916-3920.   DOI   ScienceOn
9 Pollmann, C, Hagerling, R, and Kiefer, F (2014). Visualization of lymphatic vessel development, growth, and function. Adv Anat Embryol Cell Biol. 214, 167-186.   DOI
10 Meens, MJ, Sabine, A, Petrova, TV, and Kwak, BR (2014). Connexins in lymphatic vessel physiology and disease. FEBS Lett. 588, 1271-1277.   DOI   ScienceOn
11 Meng, X, Noyes, MB, Zhu, LJ, Lawson, ND, and Wolfe, SA (2008). Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 26, 695-701.   DOI   ScienceOn
12 Mohle, R, and Drost, AC (2012). G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann N Y Acad Sci. 1266, 63-67.   DOI   ScienceOn
13 Prevo, R, Banerji, S, Ferguson, DJ, Clasper, S, and Jackson, DG (2001). Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem. 276, 19420-19430.   DOI   ScienceOn
14 Sabin, FR (1902). On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat. 1, 367-389.   DOI
15 Simon, MI, Strathmann, MP, and Gautam, N (1991). Diversity of G proteins in signal transduction. Science. 252, 802-808.   DOI
16 van der Putte, SC (1975). The development of the lymphatic system in man. Adv Anat Embryol Cell Biol. 51, 3-60.
17 Smrcka, AV (2013). Molecular targeting of G$\alpha$ and G$\beta$$\gamma$ subunits: a potential approach for cancer therapeutics. Trends Pharmacol Sci. 34, 290-298.   DOI   ScienceOn
18 Srinivasan, RS, Geng, X, Yang, Y, Wang, Y, Mukatira, S, Studer, M, Porto, MP, Lagutin, O, and Oliver, G (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696-707.   DOI   ScienceOn
19 Tammela, T, and Alitalo, K (2010). Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 140, 460-476.   DOI   ScienceOn
20 Oka, M, Iwata, C, Suzuki, HI, Kiyono, K, Morishita, Y, Watabe, T, Komuro, A, Kano, MR, and Miyazono, K (2008). Inhibition of endogenous TGF-beta signaling enhances lymphangiogenesis. Blood. 111, 4571-4579.   DOI   ScienceOn
21 Okuda, KS, Astin, JW, Misa, JP, Flores, MV, Crosier, KE, and Crosier, PS (2012). lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development. 139, 2381-2391.   DOI   ScienceOn
22 Oliver, G (2004). Lymphatic vasculature development. Nat Rev Immunol. 4, 35-45.   DOI   ScienceOn
23 Oliver, G, and Srinivasan, RS (2010). Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell. Development. 137, 363-372.   DOI   ScienceOn
24 Venkatakrishnan, AJ, Deupi, X, Lebon, G, Tate, CG, Schertler, GF, and Babu, MM (2013). Molecular signatures of G-protein-coupled receptors. Nature. 494, 185-194.   DOI   ScienceOn
25 Marcelo, KL, Goldie, LC, and Hirschi, KK (2013). Regulation of endothelial cell differentiation and specification. Circ Res. 112, 1272-1287.   DOI   ScienceOn
26 Wagner, DS, Dosch, R, Mintzer, KA, Wiemelt, AP, and Mullins, MC (2004). Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell. 6, 781-790.   DOI   ScienceOn
27 Wang, Y, and Oliver, G (2010). Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 24, 2115-2126.   DOI   ScienceOn
28 Wigle, JT, Harvey, N, Detmar, M, Lagutina, I, Grosveld, G, Gunn, MD, Jackson, DG, and Oliver, G (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505-1513.   DOI   ScienceOn
29 Kimple, AJ, Bosch, DE, Giguere, PM, and Siderovski, DP (2011). Regulators of G-protein signaling and their G$\alpha$ substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev. 63, 728-749.   DOI   ScienceOn
30 Kohli, V, Schumacher, JA, Desai, SP, Rehn, K, and Sumanas, S (2013). Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell. 25, 196-206.   DOI   ScienceOn
31 Koltowska, K, Betterman, KL, Harvey, NL, and Hogan, BM (2013). Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development. 140, 1857-1870.   DOI   ScienceOn
32 Kuchler, AM, Gjini, E, Peterson-Maduro, J, Cancilla, B, Wolburg, H, and Schulte-Merker, S (2006). Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol. 16, 1244-1248.   DOI   ScienceOn
33 Niessen, K, Zhang, G, Ridgway, JB, Chen, H, Kolumam, G, Siebel, CW, and Yan, M (2011). The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood. 118, 1989-1997.   DOI   ScienceOn
34 Murdaca, G, Cagnati, P, Gulli, R, Spano, F, Puppo, F, Campisi, C, and Boccardo, F (2012). Current views on diagnostic approach and treatment of lymphedema. Am J Med. 125, 134-140.   DOI   ScienceOn
35 Murtomaki, A, Uh, MK, Choi, YK, Kitajewski, C, Borisenko, V, Kitajewski, J, and Shawber, CJ (2013). Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 140, 2365-2376.   DOI   ScienceOn
36 Neufeld, S, Planas-Paz, L, and Lammert, E (2014). Blood and lymphatic vascular tube formation in mouse. Semin Cell Dev Biol. pii: S1084-9521(14)00025-1.
37 Ny, A, Koch, M, Schneider, M, Neven, E, Tong, RT, Maity, S, Fischer, C, Plaisance, S, Lambrechts, D, and Heligon, C (2005). A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med. 11, 998-1004.   DOI
38 Levet, S, Ciais, D, Merdzhanova, G, Mallet, C, Zimmers, TA, Lee, SJ, Navarro, FP, Texier, I, Feige, JJ, and Bailly, S (2013). Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. 122, 598-607.   DOI   ScienceOn
39 Lindeman, RE, and Pelegri, F (2010). Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev. 77, 299-313.
40 Lohela, M, Saaristo, A, Veikkola, T, and Alitalo, K (2003). Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost. 90, 167-184.
41 Kim, JD, and Kim, J (2014). Alk3/Alk3b and Smad5 Mediate BMP signaling during lymphatic development in zebrafish. Mol Cells. 37, 270-274.   DOI   ScienceOn
42 Jeltsch, M, Kaipainen, A, Joukov, V, Meng, X, Lakso, M, Rauvala, H, Swartz, M, Fukumura, D, Jain, RK, and Alitalo, K (1997). Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 276, 1423-1425.   DOI   ScienceOn
43 Pfeiffer, F, Kumar, V, Butz, S, Vestweber, D, Imhof, BA, Stein, JV, and Engelhardt, B (2008). Distinct molecular composition of blood and lymphatic vascular endothelial cell junctions establishes specific functional barriers within the peripheral lymph node. Eur J Immunol. 38, 2142-2155.   DOI   ScienceOn
44 Kim, H, and Koh, GY (2010). Platelets take the lead in lymphatic separation. Circ Res. 106, 1184-1186.   DOI   ScienceOn
45 Kim, JD, Kang, H, Larrivee, B, Lee, MY, Mettlen, M, Schmid, SL, Roman, BL, Qyang, Y, Eichmann, A, and Jin, SW (2012). Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev Cell. 23, 441-448.   DOI   ScienceOn
46 Kim, JD, Kang, Y, Kim, J, Papangeli, I, Kang, H, Wu, J, Park, H, Nadelmann, E, Rockson, SG, and Chun, HJ (2013). Essential role of Apelin signaling during lymphatic development in zebrafish. Arterioscler Thromb Vasc Biol. 34, 338-345.
47 Karkkainen, MJ, Haiko, P, Sainio, K, Partanen, J, Taipale, J, Petrova, TV, Jeltsch, M, Jackson, DG, Talikka, M, and Rauvala, H (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 5, 74-80.   DOI   ScienceOn
48 Kerjaschki, D (2014). The lymphatic vasculature revisited. J Clin Invest. 124, 874-877.   DOI   ScienceOn
49 Karpinich, NO, and Caron, KM (2014). Apelin signaling: new G protein-coupled receptor pathway in lymphatic vascular development. Arterioscler Thromb Vasc Biol. 34, 239-241.   DOI   ScienceOn
50 Karpinich, NO, Kechele, DO, Espenschied, ST, Willcockson, HH, Fedoriw, Y, and Caron, KM (2013). Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J. 27, 590-600.   DOI
51 Kidoya, H, and Takakura, N (2012). Biology of the apelin-APJ axis in vascular formation. J Biochem. 152, 125-131.   DOI   ScienceOn
52 Abrams, EW, and Mullins, MC (2009). Early zebrafish development: it’s in the maternal genes. Curr Opin Genet Dev. 19, 396-403.   DOI   ScienceOn
53 Kukk, E, Lymboussaki, A, Taira, S, Kaipainen, A, Jeltsch, M, Joukov, V, and Alitalo, K (1996). VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development. 122, 3829-3837.
54 Larrivee, B, Prahst, C, Gordon, E, del Toro, R, Mathivet, T, Duarte, A, Simons, M, and Eichmann, A (2012). ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 22, 489-500.   DOI   ScienceOn
55 Lawson, ND, and Weinstein, BM (2002). In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 248, 307-318.   DOI   ScienceOn
56 Alitalo, K (2011). The lymphatic vasculature in disease. Nat Med. 17, 1371-1380.   DOI   ScienceOn
57 Bedell, VM, Wang, Y, Campbell, JM, Poshusta, TL, Starker, CG, Krug, RG, Tan, W, Penheiter, SG, Ma, AC, and Leung, AY (2012). In vivo genome editing using a high-efficiency TALEN system. Nature. 491, 114-118.   DOI   ScienceOn
58 Aoyagi, T, Nagahashi, M, Yamada, A, and Takabe, K (2012). The role of sphingosine-1-phosphate in breast cancer tumor-induced lymphangiogenesis. Lymphat Res Biol. 10, 97-106.   DOI   ScienceOn
59 Banerji, S, Ni, J, Wang, SX, Clasper, S, Su, J, Tammi, R, Jones, M, and Jackson, DG (1999). LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 144, 789-801.   DOI   ScienceOn
60 Bazigou, E, Xie, S, Chen, C, Weston, A, Miura, N, Sorokin, L, Adams, R, Muro, AF, Sheppard, D, and Makinen, T (2009). Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell. 17, 175-186.   DOI   ScienceOn
61 Jeltsch, M, Jha, SK, Tvorogov, D, Anisimov, A, Leppanen, VM, Holopainen, T, Kivela, R, Ortega, S, Karpanen, T, and Alitalo, K (2014). CCBE1 enhances lymphangiogenesis via ADAMTS3-mediated VEGF-C activation. Circulation. 129, 1962-1971.   DOI   ScienceOn
62 Jin, SW, Beis, D, Mitchell, T, Chen, JN, and Stainier, DY (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 132, 5199-5209.   DOI   ScienceOn
63 Kamei, M, Isogai, S, Pan, W, and Weinstein, BM (2010). Imaging blood vessels in the zebrafish. Methods Cell Biol. 100, 27-54.   DOI   ScienceOn
64 Karkkainen, MJ, Ferrell, RE, Lawrence, EC, Kimak, MA, Levinson, KL, McTigue, MA, Alitalo, K, and Finegold, DN (2000). Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 25, 153-159.   DOI   ScienceOn
65 Campbell, JM, Hartjes, KA, Nelson, TJ, Xu, X, and Ekker, SC (2013). New and TALENted genome engineering toolbox. Circ Res. 113, 571-587.   DOI   ScienceOn
66 Bos, FL, Caunt, M, Peterson-Maduro, J, Planas-Paz, L, Kowalski, J, Karpanen, T, van Impel, A, Tong, R, Ernst, JA, and Korving, J (2011). CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res. 109, 486-491.   DOI   ScienceOn
67 Brouillard, P, Boon, L, and Vikkula, M (2014). Genetics of lymphatic anomalies. J Clin Invest. 124, 898-904.   DOI   ScienceOn
68 Bruyere, F, and Noël, A (2010). Lymphangiogenesis: in vitro and in vivo models. FASEB J. 24, 8-21.   DOI   ScienceOn
69 Chikly, B (1997). Who discovered the lymphatic system. Lymphology. 30, 186-193.
70 Connell, FC, Gordon, K, Brice, G, Keeley, V, Jeffery, S, Mortimer, PS, Mansour, S, and Ostergaard, P (2013). The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings. Clin Genet. 84, 303-314.   DOI   ScienceOn
71 Corey, DR, and Abrams, JM (2001). Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2, .
72 Abtahian, F, Guerriero, A, Sebzda, E, Lu, MM, Zhou, R, Mocsai, A, Myers, EE, Huang, B, Jackson, DG, and Ferrari, VA (2003). Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 299, 247-251.   DOI   ScienceOn
73 Achen, MG, McColl, BK, and Stacker, SA (2005). Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 7, 121-127.   DOI   ScienceOn
74 Doyon, Y, McCammon, JM, Miller, JC, Faraji, F, Ngo, C, Katibah, GE, Amora, R, Hocking, TD, Zhang, L, and Rebar, EJ (2008). Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 26, 702-708.   DOI   ScienceOn
75 Alders, M, Hogan, BM, Gjini, E, Salehi, F, Al-Gazali, L, Hennekam, EA, Holmberg, EE, Mannens, MM, Mulder, MF, and Offerhaus, GJ (2009). Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 41, 1272-1274.   DOI   ScienceOn
76 DeWire, SM, and Violin, JD (2011). Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology. Circ Res. 109, 205-216.   DOI   ScienceOn
77 Dorsam, RT, and Gutkind, JS (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer. 9, 79-94.
78 Dunworth, WP, Cardona-Costa, J, Cagavi, E, Kim, JD, Fischer, JC, Meadows, S, Wang, Y, Cleaver, O, Qyang, Y, and Ober, EA (2013). Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res. 114, 56-66.
79 Eichmann, A, Corbel, C, Jaffredo, T, Breant, C, Joukov, V, Kumar, V, Alitalo, K, and le Douarin, NM (1998). Avian VEGF-C: cloning, embryonic expression pattern and stimulation of the differentiation of VEGFR2-expressing endothelial cell precursors. Development. 125, 743-752.
80 Ekker, SC (2000). Morphants: a new systematic vertebrate functional genomics approach. Yeast. 17, 302-306.
81 Ellertsdottir, E, Lenard, A, Blum, Y, Krudewig, A, Herwig, L, Affolter, M, and Belting, HG (2010). Vascular morphogenesis in the zebrafish embryo. Dev Biol. 341, 56-65.   DOI   ScienceOn
82 Francois, M, Harvey, NL, and Hogan, BM (2011). The transcriptional control of lymphatic vascular development. Physiology (Bethesda). 26, 146-155.   DOI
83 Enholm, B, Karpanen, T, Jeltsch, M, Kubo, H, Stenback, F, Prevo, R, Jackson, DG, Yla-Herttuala, S, and Alitalo, K (2001). Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res. 88, 623-629.   DOI   ScienceOn
84 Bill, BR, Petzold, AM, Clark, KJ, Schimmenti, LA, and Ekker, SC (2009). A primer for morpholino use in zebrafish. Zebrafish. 6, 69-77.   DOI   ScienceOn
85 Francois, M, Caprini, A, Hosking, B, Orsenigo, F, Wilhelm, D, Browne, C, Paavonen, K, Karnezis, T, Shayan, R, and Downes, M (2008). Sox18 induces development of the lymphatic vasculature in mice. Nature. 456, 643-647.   DOI   ScienceOn
86 Fritz-Six, KL, Dunworth, WP, Li, M, and Caron, KM (2008). Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 118, 40-50.   DOI   ScienceOn
87 Geudens, I, Herpers, R, Hermans, K, Segura, I, Ruiz de Almodovar, C, Bussmann, J, De Smet, F, Vandevelde, W, Hogan, BM, and Siekmann, A (2010). Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol. 30, 1695-1702.   DOI   ScienceOn
88 Gilman, AG (1987). G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 56, 615-649.   DOI   ScienceOn
89 Goldsmith, ZG, and Dhanasekaran, DN (2007). G protein regulation of MAPK networks. Oncogene. 26, 3122-3142.   DOI   ScienceOn
90 Gore, AV, Monzo, K, Cha, YR, Pan, W, and Weinstein, BM (2012). Vascular development in the zebrafish. Cold Spring Harb Perspect Med. 2, a006684.
91 James, JM, Nalbandian, A, and Mukouyama, YS (2013). TGF$\beta$ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. Development. 140, 3903-3914.   DOI   ScienceOn
92 Hagerling, R, Pollmann, C, Andreas, M, Schmidt, C, Nurmi, H, Adams, RH, Alitalo, K, Andresen, V, Schulte-Merker, S, and Kiefer, F (2013). A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629-644.   DOI
93 Heasman, J (2002). Morpholino oligos: making sense of antisense?. Dev Biol. 243, 209-214.   DOI   ScienceOn
94 Dejana, E, Tournier-Lasserve, E, and Weinstein, BM (2009). The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell. 16, 209-221.   DOI   ScienceOn
95 Hwang, WY, Fu, Y, Reyon, D, Maeder, ML, Tsai, SQ, Sander, JD, Peterson, RT, Yeh, JR, and Joung, JK (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 31, 227-229.   DOI   ScienceOn
96 Irrthum, A, Karkkainen, MJ, Devriendt, K, Alitalo, K, and Vikkula, M (2000). Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. 67, 295-301.   DOI   ScienceOn
97 Blackburn, PR, Campbell, JM, Clark, KJ, and Ekker, SC (2013). The CRISPR system--keeping zebrafish gene targeting fresh. Zebrafish. 10, 116-118.   DOI   ScienceOn
98 McColl, BK, Baldwin, ME, Roufail, S, Freeman, C, Moritz, RL, Simpson, RJ, Alitalo, K, Stacker, SA, and Achen, MG (2003). Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med. 198, 863-868.   DOI   ScienceOn
99 Lee, S, Jilani, SM, Nikolova, GV, Carpizo, D, and Iruela-Arispe, ML (2005). Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 169, 681-691.   DOI   ScienceOn
100 Bazigou, E, and Makinen, T (2013). Flow control in our vessels: vascular valves make sure there is no way back. Cell Mol Life Sci. 70, 1055-1066.   DOI
101 Nithianandarajah-Jones, GN, Wilm, B, Goldring, CE, Muller, J, and Cross, MJ (2012). ERK5: structure, regulation and function. Cell Signal. 24, 2187-2196.   DOI   ScienceOn
102 Zheng, W, Tammela, T, Yamamoto, M, Anisimov, A, Holopainen, T, Kaijalainen, S, Karpanen, T, Lehti, K, Yla-Herttuala, S, and Alitalo, K (2011). Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 118, 1154-1162.   DOI   ScienceOn
103 Srinivasan, RS, Dillard, ME, Lagutin, OV, Lin, FJ, Tsai, S, Tsai, MJ, Samokhvalov, IM, and Oliver, G (2007). Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422-2432.   DOI   ScienceOn
104 Wigle, JT, and Oliver, G (1999). Prox1 function is required for the development of the murine lymphatic system. Cell. 98, 769-778.   DOI   ScienceOn
105 Cha, YR, Fujita, M, Butler, M, Isogai, S, Kochhan, E, Siekmann, AF, and Weinstein, BM (2012). Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell. 22, 824-836.   DOI   ScienceOn
106 Guermazi, A, Brice, P, Hennequin, C, and Sarfati, E (2003). Lymphography: an old technique retains its usefulness. Radiographics. 23, 1541-1558.   DOI   ScienceOn