Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0031

Increase in Hypotonic Stress-Induced Endocytic Activity in Macrophages via ClC-3  

Yan, Yutao (Department of Immunology, Tongji Medical College)
Ding, Yu (Department of Immunology, Tongji Medical College)
Ming, Bingxia (Department of Immunology, Tongji Medical College)
Du, Wenjiao (Department of Immunology, Tongji Medical College)
Kong, Xiaoling (Department of Immunology, Tongji Medical College)
Tian, Li (Department of Immunology, Tongji Medical College)
Zheng, Fang (Department of Immunology, Tongji Medical College)
Fang, Min (Department of Immunology, Tongji Medical College)
Tan, Zheng (Department of Immunology, Tongji Medical College)
Gong, Feili (Department of Immunology, Tongji Medical College)
Abstract
Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-${\alpha}$ or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.
Keywords
chloride channels-3; endocytosis; hypotonic stress; macrophage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dickerson, R.N., Maish, G.O., 3rd, Weinberg, J.A., Croce, M.A., Minard, G., and Brown, R.O. (2013). Safety and efficacy of intravenous hypotonic 0.225% sodium chloride infusion for the treatment of hypernatremia in critically Ill patients. Nutr. Clin. Pract. 28, 400-408.   DOI   ScienceOn
2 Duan, D.D. (2011). The ClC-3 chloride channels in cardiovascular disease. Acta Pharmacol. Sin. 32, 675-684.   DOI
3 Enz, R., Ross, B.J., and Cutting, G.R. (1999). Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. J. Neurosci. 19, 9841-9847.
4 Gaglio, P., Marfo, K., and Chiodo, J., 3rd (2012). Hyponatremia in cirrhosis and end-stage liver disease: treatment with the vasopressin V(2)-receptor antagonist tolvaptan. Dig. Dis. Sci. 57, 2774-2785.   DOI   ScienceOn
5 Gong, D., Shi, W., Yi, S.J., Chen, H., Groffen, J., and Heisterkamp, N. (2012). TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13, 31.   DOI   ScienceOn
6 Abdullaev, I.F., Sabirov, R.Z., and Okada, Y. (2003). Upregulation of swelling-activated $Cl^{-}$ channel sensitivity to cell volume by activation of EGF receptors in murine mammary cells. J. Physiol. 549, 749-758.   DOI   ScienceOn
7 Bozza, M.T., Martins, Y.C., Carneiro, L.A., and Paiva, C.N. (2012). Macrophage migration inhibitory factor in protozoan infections. J. Parasitol. Res. 2012, 413052.
8 Cassetta, L., Cassol, E., and Poli, G. (2011). Macrophage polarization in health and disease. ScientificWorldJournal 11, 2391-2402.   DOI
9 Thorp, E.B. (2012). Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance. Front. Immunol. 3, 39.
10 Tong, J., Wu, W.N., Kong, X., Wu, P.F., Tian, L., Du, W., Fang, M., Zheng, F., Chen, J.G., Tan, Z., et al. (2011). Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. J. Immunol. 186, 3686-3692.   DOI   ScienceOn
11 Torr, E.E., Gardner, D.H., Thomas, L., Goodall, D.M., Bielemeier, A., Willetts, R., Griffiths, H.R., Marshall, L.J., and Devitt, A. (2012). Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ. 19, 671-679.   DOI   ScienceOn
12 Tunkel, A.R., and Scheld, W.M. (1993). Pathogenesis and pathophysiology of bacterial meningitis. Ann. Rev. Med. 44, 103-120.   DOI   ScienceOn
13 Wheeler, T.M., Lueck, J.D., Swanson, M.S., Dirksen, R.T., and Thornton, C.A. (2007). Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952-3957.
14 Roger, T., Delaloye, J., Chanson, A.L., Giddey, M., Le Roy, D., and Calandra, T. (2013). Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J. Infect. Dis. 207, 331-339.   DOI   ScienceOn
15 Xiong, D., Heyman, N.S., Airey, J., Zhang, M., Singer, C.A., Rawat, S., Ye, L., Evans, R., Burkin, D.J., Tian, H., et al. (2010). Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice. J. Mol. Cell. Cardiol. 48, 211-219.   DOI   ScienceOn
16 Zhang, Y.X., Zhang, J.R., and Wang, Z.G. (2013). Mycophenolate mofetil affects monocyte Toll-like receptor 4 signaling during mouse renal ischemia/reperfusion injury. Chin. Med. J. 126, 1224-1229.
17 Roberts, B.N., and Christini, D.J. (2011). NHE inhibition does not improve Na(+) or Ca(2+) overload during reperfusion: using modeling to illuminate the mechanisms underlying a therapeutic failure. PLoS Comput. Biol. 7, e1002241.   DOI
18 Schliess, F., Foster, N., Gorg, B., Reinehr, R., and Haussinger, D. (2004). Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes. Glia 47, 21-29.   DOI   ScienceOn
19 Shapiro, H., Lutaty, A., and Ariel, A. (2011). Macrophages, metainflammation, and immuno-metabolism. ScientificWorldJournal 11, 2509-2529.   DOI
20 Siegel, A.J. (2007). Hypertonic (3%) sodium chloride for emergent treatment of exercise-associated hypotonic encephalopathy. Sports Med. 37, 459-462.   DOI   ScienceOn
21 Medina-Contreras, O., Geem, D., Laur, O., Williams, I.R., Lira, S.A., Nusrat, A., Parkos, C.A., and Denning, T.L. (2011). CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest. 121, 4787-4795.   DOI   ScienceOn
22 Stobrawa, S.M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A.A., Bosl, M.R., Ruether, K., Jahn, H., Draguhn, A., et al. (2001). Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185-196.   DOI   ScienceOn
23 Tamura, N., Hazeki, K., Okazaki, N., Kametani, Y., Murakami, H., Takaba, Y., Ishikawa, Y., Nigorikawa, K., and Hazeki, O. (2009). Specific role of phosphoinositide 3-kinase p110alpha in the regulation of phagocytosis and pinocytosis in macrophages. Biochem J. 423, 99-108.   DOI   ScienceOn
24 Tang, C.Y., and Chen, T.Y. (2011). Physiology and pathophysiology of ClC-1: mechanisms of a chloride channel disease, myotonia. J. Biomed. Biotechnol. 2011, 685328.
25 Min, X.J., Li, H., Hou, S.C., He, W., Liu, J., Hu, B., and Wang, J. (2011). Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp. Biol. Med. 236, 483-491.   DOI   ScienceOn
26 Okada, Y., Maeno, E., Shimizu, T., Manabe, K., Mori, S., and Nabekura, T. (2004). Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch. 448, 287-295.   DOI   ScienceOn
27 Okada, Y., Sato, K., and Numata, T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 587, 2141-2149.
28 Parveen, N., Varman, R., Nair, S., Das, G., Ghosh, S., and Mukhopadhyay, S. (2013). Endocytosis of Mycobacterium tuberculosis heat shock protein 60 is required to induce production in macrophages. J. Biol. Chem. 288, 24956-24971.   DOI   ScienceOn
29 Okamoto, F., Kajiya, H., Toh, K., Uchida, S., Yoshikawa, M., Sasaki, S., Kido, M.A., Tanaka, T., and Okabe, K. (2008). Intracellular ClC-3 chloride channels promote bone resorption in vitro through organelle acidification in mouse osteoclasts. Am. J. Physiol. Cell Physiol. 294, C693-701.   DOI   ScienceOn
30 Park, K.R., and Bryers, J.D. (2012). Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: a murine in vitro model system. J. Biomed. Mater. Res. A 100, 2045-2053.
31 Hermoso, M., Satterwhite, C.M., Andrade, Y.N., Hidalgo, J., Wilson, S.M., Horowitz, B., and Hume, J.R. (2002). ClC-3 is a fundamental molecular component of volume-sensitive outwardly rectifying Cl- channels and volume regulation in HeLa cells and Xenopus laevis oocytes. J. Biol. Chem. 277, 40066-40074.   DOI   ScienceOn
32 Inoue, H., Takahashi, N., Okada, Y., and Konishi, M. (2010). Volume-sensitive outwardly rectifying chloride channel in white adipocytes from normal and diabetic mice. Am. J. Physiol. Cell Physiol. 298, C900-909.   DOI   ScienceOn
33 Kajimoto, K., Shao, D., Takagi, H., Maceri, G., Zablocki, D., Mukai, H., Ono, Y., and Sadoshima, J. (2011). Hypotonic swellinginduced activation of PKN1 mediates cell survival in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 300, H191-200.   DOI   ScienceOn
34 Kondo, A., Maeta, M., Oka, A., Tsujitani, S., Ikeguchi, M., and Kaibara, N. (1996). Hypotonic intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in mice. Br. J. Cancer 73, 1166-1170.   DOI   ScienceOn
35 Liu, X., Silverstein, P.S., Singh, V., Shah, A., Qureshi, N., and Kumar, A. (2012). Methamphetamine increases LPS-mediated expression of IL-8, TNF-$\alpha$ and IL-$\1beta$ in human macrophages through common signaling pathways. PLoS One 7, e33822.   DOI
36 Kong, X., Tang, X., Du, W., Tong, J., Yan, Y., Zheng, F., Fang, M., Gong, F., and Tan, Z. (2013). Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell. Immunol. 281, 44-50.   DOI   ScienceOn
37 Li, X., and Liu, X. (2005). Effect of curcumin on immune function of mice. J. Huazhong Univ. Sci. Technol. Med. Sci. 25, 137-140.   DOI
38 Link, T.M., Park, U., Vonakis, B.M., Raben, D.M., Soloski, M.J., and Caterina, M.J. (2010). TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat. Immunol. 11, 232-239.
39 Chu, X., Filali, M., Stanic, B., Takapoo, M., Sheehan, A., Bhalla, R., Lamb, F.S., and Miller, F.J., Jr. (2011). A critical role for chloride channel-3 (CIC-3) in smooth muscle cell activation and neointima formation. Arterioscler. Thromb. Vasc. Biol. 31, 345-351.   DOI   ScienceOn
40 Comes, N., Gasull, X., Gual, A., and Borras, T. (2005). Differential expression of the human chloride channel genes in the trabecular meshwork under stress conditions. Exp. Eye Res. 80, 801-813.   DOI   ScienceOn
41 Dick, G.M., Kong, I.D., and Sanders, K.M. (1999). Effects of anion channel antagonists in canine colonic myocytes: comparative pharmacology of $Cl^{-}$, $Ca^{2+}$ and $K^+$ currents. Br. J. Pharmacol. 127, 1819-1831.   DOI   ScienceOn
42 Mohammad-Panah, R., Harrison, R., Dhani, S., Ackerley, C., Huan, L.J., Wang, Y., and Bear, C.E. (2003). The chloride channel ClC-4 contributes to endosomal acidification and trafficking. J. Biol. Chem. 278, 29267-29277.   DOI   ScienceOn