Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0072

Zebrafish Crip2 Plays a Critical Role in Atrioventricular Valve Development by Downregulating the Expression of ECM Genes in the Endocardial Cushion  

Kim, Jun-Dae (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Kim, Hey-Jin (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Koun, Soonil (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Ham, Hyung-Jin (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Kim, Myoung-Jin (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Rhee, Myungchull (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
Huh, Tae-Lin (School of Life Science and Biotechnology (Brain Korea 21 plus program), Kyungpook National University)
Abstract
The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardialmesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish crip2 expression is restricted to a subset of cells in the AV canal (AVC) endocardium at 55 hours post-fertilization (hpf). Knockdown of crip2 induced a heart-looping defect in zebrafish embryos, although the development of cardiac chambers appeared to be normal. In the AVC of Crip2-deficient embryos, the expression of both versican a and hyaluronan synthase 2 (has2) was highly upregulated, but the expression of bone morphogenetic protein 4 (bmp4) and T-box 2b (tbx2b) in the myocardium and of notch1b in the endocardium in the AVC did not change. Taken together, these results indicate that crip2 plays an important role in AV valve development by downregulating the expression of ECM components in the endocardial cushion.
Keywords
cardiac valve; crip2; has2; versican; zebrafish;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 van Ham, M., Croes, H., Schepens, J., Fransen, J., Wieringa, B., and Hendriks, W. (2003) Cloning and characterization of mCRIP2, a mouse LIM-only protein that interacts with PDZ domain IV of PTP-BL. Genes Cells 8, 631-644.   DOI   ScienceOn
2 Walsh, E.C., and Stainier, D.Y. (2001) UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670-1673.   DOI   ScienceOn
3 Yelon, D., Horne, S.A., and Stainier, D.Y. (1999). Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23-37.   DOI   ScienceOn
4 Larson, J.D., Wadman, S.A., Chen, E., Kerley, L., Clark, K.J., Eide, M., Lippert, S., Nasevicius, A., Ekker, S.C., Hackett, P.B., et al. (2004). Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development. Dev. Dyn. 231, 204-213.   DOI   ScienceOn
5 Ma, L., Lu, M.F., Schwartz, R.J., and Martin, J.F. (2005). Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132, 5601-5611.   DOI   ScienceOn
6 Mjaatvedt, C.H., Yamamura, H., Capehart, A.A., Turner, D., and Markwald, R.R. (1998). The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 202, 56-66.   DOI   ScienceOn
7 Nakajima, Y., Yamagishi, T., Hokari, S., and Nakamura, H. (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat. Rec. 258, 119-127.   DOI
8 Schroeder, J.A., Jackson, L.F., Lee, D.C., and Camenisch, T.D. (2003). Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J. Mol. Med. 81, 392-403.   DOI
9 Stainier, D.Y., Beis, D., Jungblut, B., and Bartman, T. (2002) Endocardial cushion formation in zebrafish. Cold Spring Harb. Symp. Quant. Biol. 67, 49-56.   DOI
10 Sun, X., Zhang, R., Lin, X., and Xu, X. (2008) Wnt3a regulates the development of cardiac neural crest cells by modulating expression of cysteine-rich intestinal protein 2 in rhombomere 6. Circ. Res. 102, 831-839.   DOI   ScienceOn
11 Kihara, T., Shinohara, S., Fujikawa, R., Sugimoto, Y., Murata, M., and Miyake, J. (2011). Regulation of cysteine-rich protein 2 localization by the development of actin fibers during smooth muscle cell differentiation. Biochem. Biophys. Res. Commun. 411, 96-101.   DOI   ScienceOn
12 Kim, J.D., and Kim, J. (2014). Alk3/Alk3b and Smad5 Mediate BMP signaling during lymphatic development in zebrafish. Mol. Cells 37, 270-274.   DOI   ScienceOn
13 Kim, S.H., Schmitt, C.E., Woolls, M.J., Holland, M.B., Kim, J.D., and Jin, S.W. (2013b). Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development. Biochem. Biophys. Res. Commun. 430, 1212-1216.   DOI   ScienceOn
14 Kim, J.D., Kang, H., Larrivee, B., Lee, M.Y., Mettlen, M., Schmid, S.L., Roman, B.L., Qyang, Y., Eichmann, A., and Jin, S.W. (2012a). Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev. Cell 23, 441-448.   DOI   ScienceOn
15 Kim, Y.S., Kim, M.J., Koo, T.H., Kim, J.D., Koun, S., Ham, H.J., Lee, Y.M., Rhee, M., Yeo, S.Y., and Huh, T.L. (2012b). Histone deacetylase is required for the activation of Wnt/$\beta$-catenin signaling crucial for heart valve formation in zebrafish embryos. Biochem. Biophys. Res. Commun. 423, 140-146.   DOI   ScienceOn
16 Kim, J.D., Kang, Y., Kim, J., Papangeli, I., Kang, H., Wu, J., Park, H., Nadelmann, E., Rockson, S.G., Chun, H.J., et al. (2013a). Essential role of Apelin signaling during lymphatic development in zebrafish. Arterioscler. Thromb. Vasc. Biol. 34, 338-345.
17 Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310.   DOI   ScienceOn
18 Krug, E.L., Runyan, R.B., and Markwald, R.R. (1985). Protein extracts from early embryonic hearts initiate cardiac endothelial cytodifferentiation. Dev. Biol. 112, 414-426.   DOI   ScienceOn
19 Hu, N., Sedmera, D., Yost, H.J., and Clark, E.B. (2000). Structure and function of the developing zebrafish heart. Anat. Rec. 260, 148-157.   DOI
20 Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30-40.   DOI   ScienceOn
21 Jiao, K., Kulessa, H., Tompkins, K., Zhou, Y., Batts, L., Baldwin, H.S., and Hogan, B.L. (2003) An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362-2367.   DOI   ScienceOn
22 Jin, S.W., Beis, D., Mitchell, T., Chen, J.N., and Stainier, D.Y. (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209.   DOI   ScienceOn
23 Jowett, T., and Lettice, L. (1994). Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet. 10, 73-74.   DOI   ScienceOn
24 Combs, M.D., and Yutzey, K.E. (2009). Heart valve development: regulatory networks in development and disease. Circ. Res. 105, 408-421.   DOI   ScienceOn
25 Delot, E.C. (2003). Control of endocardial cushion and cardiac valve maturation by BMP signaling pathways. Mol. Genet. Metab. 80, 27-35.   DOI   ScienceOn
26 Armstrong, E.J., and Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95, 459-470.   DOI   ScienceOn
27 Beis, D., Bartman, T., Jin, S.W., Scott, I.C., D'Amico, L.A., Ober, E.A., Verkade, H., Frantsve, J., Field, H.A., Wehman, A., et al. (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193-4204.   DOI   ScienceOn
28 Camenisch, T.D., Spicer, A.P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M.L., Calabro, A., Kubalak, S., Klewer, S.E., and McDonald, J.A. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronanmediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349-360.   DOI   ScienceOn
29 Timmerman, L.A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J.M., Diez, J., Aranda, S., Palomo, S., McCormick, F., Izpisua-Belmonte, J.C., et al. (2004) Notch promotes epithelialmesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99-115.   DOI   ScienceOn
30 Tsui, S.K., Chan, P.P., Cheuk, C.W., Liew, C.C., Waye, M.M., Fung, K.P., and Lee, C.Y. (1996) A novel cDNA encoding for a LIM domain protein located at human chromosome 14q32 as a candidate for leukemic translocation. Biochem. Mol. Biol. Int. 39, 747-754.
31 Hurlstone, A.F., Haramis, A.P., Wienholds, E., Begthel, H., Korving, J., Van Eeden, F., Cuppen, E., Zivkovic, D., Plasterk, R.H., and Clevers, H. (2003). The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633-637.   DOI   ScienceOn
32 Karim, M.A., Ohta, K., Egashira, M., Jinno, Y., Niikawa, N., Matsuda, I., and Indo, Y. (1996). Human ESP1/CRP2, a member of the LIM domain protein family: characterization of the cDNA and assignment of the gene locus to chromosome 14q32.3. Genomics 31, 167-176.   DOI   ScienceOn