Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2302

PV.1 Suppresses the Expression of FoxD5b during Neural Induction in Xenopus Embryos  

Yoon, Jaeho (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Kim, Jung-Ho (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Kim, Sung Chan (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Park, Jae-Bong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Lee, Jae-Yong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Kim, Jaebong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
Abstract
Suppression of bone morphogenetic protein (BMP) signaling induces neural induction in the ectoderm of developing embryos. BMP signaling inhibits neural induction via the expression of various neural suppressors. Previous research has demonstrated that the ectopic expression of dominant negative BMP receptors (DNBR) reduces the expression of target genes down-stream of BMP and leads to neural induction. Additionally, gain-of-function experiments have shown that BMP downstream target genes such as MSX1, GATA1b and Vent are involved in the suppression of neural induction. For example, the Vent1/2 genes are involved in the suppression of Geminin and Sox3 expression in the neural ectodermal region of embryos. In this paper, we investigated whether PV.1, a BMP downstream target gene, negatively regulates the expression of FoxD5b, which plays a role in maintaining a neural progenitor population. A promoter assay and a cyclohexamide experiment demonstrated that PV.1 negatively regulates FoxD5b expression.
Keywords
BMP; FoxD5b; neurogenesis; PV.1; Xenopus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ault, K.T., Dirksen, M.L., and Jamrich, M. (1996). A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 6415-6420.   DOI   ScienceOn
2 Ault, K.T., Xu, R.H., Kung, H.F., and Jamrich, M. (1997). The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos. Dev. Biol. 192, 162-171.   DOI   ScienceOn
3 Chung, H.G., and Chung, H.M. (1999). Neuregulin induces the expression of mesodermal genes in the ectoderm of Xenopus laevis. Mol. Cells 9, 497-503.
4 Dale, L., and Jones, C.M. (1999). BMP signalling in early Xenopus development. Bioessays 21, 751-760.   DOI   ScienceOn
5 Dale, L., and Wardle, F.C. (1999). A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin. Cell Dev. Biol. 10, 319-326.   DOI   ScienceOn
6 Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C., and Niehrs, C. (1997). Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517-519.   DOI   ScienceOn
7 Fetka, I., Doederlein, G., and Bouwmeester, T. (2000). Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus. Mech. Dev. 93, 49-58.   DOI   ScienceOn
8 Friedle, H., and Knochel, W. (2002). Cooperative interaction of Xvent-2 and GATA-2 in the activation of the ventral homeobox gene Xvent-1B. J. Biol. Chem. 277, 23872-23881.   DOI   ScienceOn
9 Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C., and Niehrs, C. (1995). Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268-6279.
10 Hawley, S.H., Wunnenberg-Stapleton, K., Hashimoto, C., Laurent, M.N., Watabe, T., Blumberg, B.W., and Cho, K.W. (1995). Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923-2935.   DOI   ScienceOn
11 Hwang, Y.S., Seo, J.J., Cha, S.W., Lee, H.S., Lee, S.Y., Roh, D.H., Kung Hf, H.F., Kim, J., and Ja Park, M. (2002). Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem. Biophys. Res. Commun. 292, 1081-1086.   DOI   ScienceOn
12 Hwang, Y.S., Lee, H.S., Roh, D.H., Cha, S., Lee, S.Y., Seo, J.J., Kim, J., and Park, M.J. (2003). Active repression of organizer genes by C-terminal domain of PV.1. Biochem. Biophys. Res. Commun. 308, 79-86.   DOI   ScienceOn
13 Jackson, B.C., Carpenter, C., Nebert, D.W., and Vasiliou, V. (2010). Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics 4, 345-352.
14 Katoh, M., and Katoh, M. (2004). Human FOX gene family (Review). Int. J. Oncol. 25, 1495-1500.
15 Katoh, M., Igarashi, M., Fukuda, H., Nakagama, H., and Katoh, M. (2012). Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328, 198-206.
16 Nieuwkoop, P.D., and Faber, J. (1967). Normal table of Xenopus laevis, Vol. 2nd ed. (Northe Holland, Amsterdam).
17 Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B., and De Robertis, E.M. (2005). Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19, 1022-1027.   DOI   ScienceOn
18 Lee, H.C., Tseng, W.A., Lo, F.Y., Liu, T.M., and Tsai, H.J. (2009). FoxD5 mediates anterior-posterior polarity through upstream modulator Fgf signaling during zebrafish somitogenesis. Dev. Biol. 336, 232-245.   DOI   ScienceOn
19 Lee, H.S., Lee, S.Y., Lee, H., Hwang, Y.S., Cha, S.W., Park, S., Lee, J.Y., Park, J.B., Kim, S., Park, M.J., et al. (2011). Direct response elements of BMP within the PV.1A promoter are essential for its transcriptional regulation during early Xenopus development. PLoS One 6, e22621.   DOI   ScienceOn
20 Pohl, B.S., and Knochel, W. (2005). Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344, 21-32.   DOI   ScienceOn
21 Rogers, C.D., Archer, T.C., Cunningham, D.D., Grammer, T.C., and Casey, E.M. (2008). Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev. Biol. 313, 307-319.   DOI   ScienceOn
22 Rogers, C.D., Moody, S.A., and Casey, E.S. (2009). Neural induction and factors that stabilize a neural fate. Birth Defects Res. C Embryo Today 87, 249-262.   DOI   ScienceOn
23 Shibata, K., Ishimura, A., and Maeno, M. (1998). GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo. Biochem. Biophys. Res. Commun. 252, 241-248.   DOI   ScienceOn
24 Suzuki, A., Ueno, N., and Hemmati-Brivanlou, A. (1997). Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development (Cambridge, England) 124, 3037-3044.
25 Taylor, J.J., Wang, T., and Kroll, K.L. (2006). Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. Dev. Biol. 289, 494-506.   DOI   ScienceOn
26 Smith, J.C., and Slack, J.M. (1983). Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78, 299-317.
27 Sullivan, S.A., Akers, L., and Moody, S.A. (2001). foxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the Cterminal domain. Dev. Biol. 232, 439-457.   DOI   ScienceOn
28 Wacker, S.A., McNulty, C.L., and Durston, A.J. (2004). The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev. Biol. 266, 123-137.   DOI   ScienceOn
29 Wilson, P.A., and Hemmati-Brivanlou, A. (1995). Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331-333.   DOI   ScienceOn
30 Xu, R.H., Kim, J., Taira, M., Zhan, S., Sredni, D., and Kung, H.F. (1995). A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 212, 212-219.   DOI   ScienceOn
31 Yan, B., Neilson, K.M., and Moody, S.A. (2009a). foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev. Biol. 329, 80-95.   DOI   ScienceOn
32 Yan, B., Neilson, K.M., and Moody, S.A. (2009b). Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation. Dev. Dyn. 238, 1358-1365.   DOI   ScienceOn
33 Moore, K.B., Mood, K., Daar, I.O., and Moody, S.A. (2004). Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55-67.   DOI   ScienceOn
34 Yu, J.K., Holland, N.D., and Holland, L.Z. (2002). An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289-297.   DOI   ScienceOn
35 Dosch, R., Gawantka, V., Delius, H., Blumenstock, C., and Niehrs, C. (1997). Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development (Cambridge, England) 124, 2325-2334.