Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2348

Glucosylation of Isoflavonoids in Engineered Escherichia coli  

Pandey, Ramesh Prasad (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Parajuli, Prakash (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Koirala, Niranjan (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Lee, Joo Ho (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Park, Yong Il (Department of Biotechnology, The Catholic University of Korea)
Sohng, Jae Kyung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Abstract
A glycosyltransferase, YjiC, from Bacillus licheniformis has been used for the modification of the commercially available isoflavonoids genistein, daidzein, biochanin A and formononetin. The in vitro glycosylation reaction, using UDP-${\alpha}$-D-glucose as a donor for the glucose moiety and aforementioned four acceptor molecules, showed the prominent glycosylation at 4' and 7 hydroxyl groups, but not at the $5^{th}$ hydroxyl group of the A-ring, resulting in the production of genistein 4'-O-${\beta}$-D-glucoside, genistein 7-O-${\beta}$-D-glucoside (genistin), genistein 4',7-O-${\beta}$-D-diglucoside, biochanin A-7-O-${\beta}$-D-glucoside (sissotrin), daidzein 4'-O-${\beta}$-D-glucoside, daidzein 7-O-${\beta}$-D-glucoside (daidzin), daidzein 4', 7-O-${\beta}$-D-diglucoside, and formononetin 7-O-${\beta}$-D-glucoside (ononin). The structures of all the products were elucidated using high performance liquid chromatography-photo diode array and high resolution quadrupole time-of-flight electrospray ionization mass spectrometry (HR QTOF-ESI/MS) analysis, and were compared with commercially available standard compounds. Significantly higher bioconversion rates of all four isoflavonoids was observed in both in vitro as well as in vivo bioconversion reactions. The in vivo fermentation of the isoflavonoids by applying engineered E. coli $BL21(DE3)/{\Delta}pgi{\Delta}zwf{\Delta}ushA$ overexpressing phosphoglucomutase (pgm) and glucose 1-phosphate uridyltransferase (galU), along with YjiC, found more than 60% average conversion of $200{\mu}M$ of supplemented isoflavonoids, without any additional UDP-${\alpha}$-D-glucose added in fermentation medium, which could be very beneficial to large scale industrial production of isoflavonoid glucosides.
Keywords
fermentation; glycosyltransferase; isoflavonoid glucosides; isoflavonoids;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Di Carlo, G., Mascolo, N., Izzo, A.A., and Capasso, F. (1999). Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 65, 337-353.   DOI   ScienceOn
2 Botta, B., Menendez, P., Zappia, G., de Lima, R.A., Torge, R., and Monachea, G.D. (2009). Prenylated Isoflavonoids: Botanical distribution, structures, biological activities and biotechnological studies. An update (1995-2006). Curr. Med. Chem. 16, 3414-3468.   DOI   ScienceOn
3 Dewick, P.M. (1993). The flavonoids, advances in research since 1986. In Isoflavonoids, J.B. Harbone, ed. (London: Chapman and Hall), pp. 117-238.
4 Gurung, R.B., Kim, E.H., Oh, T.J., and Sohng, J.K. (2013). Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 36, 1-10.   DOI
5 Hopwood, D.A., Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B.A.M., Floss, H.G., and Omura, S. (1985). Production of "hybrid" antibiotics by genetic engineering. Nature 314, 642-644.   DOI   ScienceOn
6 Horinouchi, S. (2008). Combinatorial biosynthesis of non-bacterial and unnatural flavonoids, stilbenoids and curcuminoids by microorganisms. J. Antibiot. (Tokyo) 61, 709-728.   DOI   ScienceOn
7 Julsing, M.K., Koulman, A., Woerdenbag, H.J., Quax, W.J., and Kayser, O. (2006). Combinatorial biosynthesis of medicinal plant secondary metabolites. Biomol. Eng. 23, 265-279.   DOI   ScienceOn
8 Kren, V., and Martinkova, L. (2001). Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr. Med. Chem. 8, 1303-1328.   DOI   ScienceOn
9 McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., and Ashley, G. (1999). Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products. Proc. Natl. Acad. Sci. USA 96, 1846-1851.   DOI   ScienceOn
10 Kim, B., Choi, J.S., Yi, E.H., Lee, J., Won, C., Ye, S., and Kim, M. (2013). Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-${\kappa}B$/CRE/AP-1 signalling in murine macrophages. Mol. Cells 35, 410-420.   DOI
11 Lapcik, O. (2007). Isoflavonoids in non-leguminous tax: a rarity or a rule? Phytochemistry 68, 2909-2916.   DOI   ScienceOn
12 Malla, S., Pandey, R.P., Kim, B.G., and Sohng, J.K. (2013). Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol. Bioeng. 110, 2525-2535.   DOI   ScienceOn
13 Pandey, R.P., Li, T.F., Kim, E.H., Yamaguchi, T., Park, Y.I., Kim, J.S., and Sohng, J.K. (2013a). Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79, 3516-3521.   DOI   ScienceOn
14 Pandey, R.P., Parajuli, P., Koirala, N., Park, J.W., and Sohng, J.K. (2013b). Probing 3-hydroxyflavone for in vitro glycorandomization of flavonols by YjiC. Appl. Environ. Microbiol. 79, 6833-6838.   DOI   ScienceOn
15 Stupp, G.S., von Reuss, S.H., Izrayelit, Y., Ajredini, R., Schroeder, F.C., and Edison, A.S. (2013). Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol. 15, 309-313.
16 Pandey, R.P., Malla, S., Simkhada, D., Kim, B.G., and Sohng, J.K. (2013c). Production of 3-O-xylosyl quercetin in Escherichia coli. Appl. Microbiol. Biotechnol. 97, 1889-1901.   DOI   ScienceOn
17 Samuelsson, G., and Bohlin, L. (2001). Drugs of Natural Origin: A textbook of pharmacognosy. (Stockholm: Swedish Pharmaceutical Press).
18 Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., and Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part II: Reconstitution of multienzyme pathways in plants and microbes. Biotechnol. J. 2, 1235-1249.   DOI   ScienceOn
19 Veitch, N.C. (2007). Isoflavonoids of the Leguminosae. Nat. Prod. Rep. 24, 417-464.   DOI   ScienceOn
20 Veitch, N.C. (2013). Isoflavonoids of the Leguminosae. Nat. Prod. Rep. 30, 988-1027.   DOI   ScienceOn
21 Vogt, T., and Jones, P. (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386.   DOI   ScienceOn
22 Wang, X. (2010). Structural studies and mechanisms of isoflavonoid biosynthesis. In Isoflavones Biosynthesis, Occurance and Health Effects. M.J. Thompson, ed. (New York: Nova Science Publishers Inc.), pp. 239-254.
23 Wang, X. (2011). Structure, function, and engineering of enzymes in isoflavonoid biosynthesis. Funct. Integr. Genomics 11, 13-22.   DOI
24 Weymouth-Wilson, A.C. (1997). The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99-110.   DOI   ScienceOn
25 Pandey, R.P., and Sohng, J.K. (2013). Genetics of flavonoids. In Hand Book of Natural Products, Phytochemistry, Botany and Metabolism, K.G. Ramawat, and J.M. Merillon, eds. (Berlin Heidelberg: Springer-Verlag), pp.1617-1645.
26 Williams, G.J., Yang, J., Zhang, C., and Thorson, J.S. (2011). Recombinant E. coli prototype strains for in vivo glycorandomization. ACS Chem. Biol. 6, 95-100.   DOI   ScienceOn
27 Wu, C.Z., Jang, J.H., Woo, M., Ahn, J.S., Kim, J.S., and Hong, Y.S. (2012) Enzymatic glycosylation of non-benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78, 7680-7686.   DOI
28 Hoikkala, A., Mustonen, E., Saastamoinen, I., Jokela, T., Taponen, J., Saloniemi, H., and Wahala, K. (2007). High levels of equol in organic skimmed Finnish cow milk. Mol. Nutr. Food Res. 51, 782-786.   DOI   ScienceOn