Browse > Article
http://dx.doi.org/10.1007/s10059-009-0131-y

Production of Cellulosic Ethanol in Saccharomyces cerevisiae Heterologous Expressing Clostridium thermocellum Endoglucanase and Saccharomycopsis fibuligera β-glucosidase Genes  

Jeon, Eugene (School of Life Science and Biotechnology, Korea University)
Hyeon, Jeong-eun (School of Life Science and Biotechnology, Korea University)
Suh, Dong Jin (Clean Energy Research Center, Korea Institute of Science and Technology)
Suh, Young-Woong (Clean Energy Research Center, Korea Institute of Science and Technology)
Kim, Seoung Wook (Department of Chemical Biological Engineering, Korea University)
Song, Kwang Ho (Department of Chemical Biological Engineering, Korea University)
Han, Sung Ok (School of Life Science and Biotechnology, Korea University)
Abstract
Heterologous secretory expression of endoglucanase E (Clostridium thermocellum) and ${\beta}$-glucosidase 1 (Saccharomycopsis fibuligera) was achieved in Saccharomyces cerevisiae fermentation cultures as an ${\alpha}$-mating factor signal peptide fusion, based on the native enzyme coding sequence. Ethanol production depends on simultaneous saccharification of cellulose to glucose and fermentation of glucose to ethanol by a recombinant yeast strain as a microbial biocatalyst. Recombinant yeast strain expressing endoglucanase and ${\beta}$-glucosidase was able to produce ethanol from ${\beta}$-glucan, CMC and acid swollen cellulose. This indicates that the resultant yeast strain of this study acts efficiently as a whole cell biocatalyst.
Keywords
beta-glucosidase; cellulose degradation; Clostridium thermocellum; endoglucanase; ethanol production; extracellular expression; Saccharomyces cerevisiae;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Abdeev, R.M., Goldenkova, I.V., Musiychuk, K.A., and Piruzian, E.S. (2001). Exploring the properties of thermostable Clostridium thermocellum cellulase CelE for the purpose of its expression in plants. Biochemistry 66, 808-813
2 Benitez, J., Silva, A., Vazquez, R., Noa, M.D., and Hollenberg, C.P. (1989). Secretion and glycosylation of Clostridium thermocellum endoglucanase A encoded by the celA gene in Saccharomyces cerevisiae. Yeast 5, 299-306   DOI   ScienceOn
3 Hahn-Hagerdal, B., Wahlbom, C.F., Gardonyi, M., van Zyl, W.H., Cordero Otero, R.R., and Jonsson, L.J. (2001). Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biotechnol. 73, 53-84
4 Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72, 1136-1143   DOI   ScienceOn
5 Machida, M., Ohtsuki, I., Fukui, S., and Yamashita, I. (1988). Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54, 3147-3155   PUBMED
6 Zhou, S., and Ingram, L.O. (2001). Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol. Lett. 23, 1455-1462   DOI   ScienceOn
7 Hall, J., Hazlewood, G.P., Barker, P.J., and Gilbert, H.J. (1988). Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29-38   DOI   ScienceOn
8 Den Haan, R., Rose, S.H., Lynd, L.R., and van Zyl, W.H. (2007). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87-94   DOI   ScienceOn
9 Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136-5141   DOI   ScienceOn
10 Wood, T. M., and Bhat, K.M. (1988). Methods for measuring cellulase activities. Methods Enzymol. 160, 87-112   DOI
11 Schwarz, W.H., Bronnenmeier, K., Grabnitz, F., and Staudenbauer, W.L. (1987). Activity staining of cellulases in polyacrylamide gels containing mixed linkage $\beta$-glucans. Anal. Biochem. 164, 72-77   DOI   ScienceOn
12 Teeri, T.T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160-167   DOI   ScienceOn
13 Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254   DOI   PUBMED   ScienceOn
14 Stagoj, M.N., Comino, A., and Komel, R. (2006). A novel GAL recombinant yeast strain for enhanced protein production. Biomol. Eng. 23, 195-199   DOI   ScienceOn
15 Murai, T., Ueda, M., Kawaguchi, T., Arai, M., and Tanaka, A. (1998). Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. 64, 4857- 4861   PUBMED
16 Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). A Laboratory Manual, 2nd ed., (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory)
17 Tokatlidis, K., Salamitou, S., Beguin, P., Dhurjati, P., and Aubert, J.P. (1991). Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291, 185-188   DOI   ScienceOn
18 Guedon, E., Desvaux, M., and Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58   DOI   ScienceOn
19 Lee, J.H., Kim, K., Park, E.H., Ahn, K., and Lim, C.J. (2007). Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombe. Mol. Cells 24, 316-322   PUBMED
20 Lynd, L.R., and Grethlein, H.E. (1987). Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol. Bioeng. 29, 92-100   DOI   ScienceOn
21 Wood, B.E., and Ingram, L.O. (1992). Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58, 2103-
22 Arikan, B., Unaldi, M.N., Guvenmez, H., and Coral, G. (2002). Some Properties of Crude Carboxymethyl Cellulase of Aspergillus niger Z10 wild-Type Strain. Turk. J. Biol. 26, 209-213
23 Cho, K.M., and Yoo, Y.J. (1999). Novel SSF process form ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, L2612δGC. J. Microbiol. Biotechnol. 9, 340-345
24 Islam, R., Cicek, N., Sparling, R., and Levin, D. (2008). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 82, 141-148   DOI   ScienceOn
25 Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., and Ueda, M. (2008). Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. J. Biosci. Bioeng. 105, 622-627   DOI   PUBMED   ScienceOn
26 Okada, H., Sekiya, T., Yokoyama, K., Tohda, H., Kumagai, H., and Morikawa, Y. (1998). Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl. Microbiol. Biotechnol. 49, 301-308   DOI   ScienceOn
27 Patni, N.J., and Alexander, J.K. (1971). Utilization of glucose by Clostridium thermocellum: presence of glucokinase and other glycolytic enzymes in cell extracts. J. Bacteriol. 105, 220-225   PUBMED
28 Van Maris, A.J., Abbott, D.A., Bellissimi, E., Van den Brink, J., Kuyper, M., Luttik, M.A., Wisselink, H.W., Scheffers, W.A., Van Dijken, J.P., and Pronk, J.T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90, 391-418   DOI   ScienceOn
29 Van Rooyen, R., Hahn-Hagerdal, B., La Grange, D.C., and Van Zyl, W.H. (2005). Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120, 284-295   DOI   ScienceOn
30 Schwarz, W.H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634-649   DOI   ScienceOn