Browse > Article
http://dx.doi.org/10.1007/s10059-009-0106-z

Gain of New Exons and Promoters by Lineage-Specific Transposable Elements-Integration and Conservation Event on CHRM3 Gene  

Huh, Jae-Won (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Young-Hyun (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Sang-Rae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Hyoungwoo (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Dae-Soo (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
Kang, Han-Seok (College of Natural Resources and Life Sciences, Pusan National University)
Chang, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
The CHRM3 gene is a member of the muscarinic acetylcholine receptor family that plays important roles in the regulation of fundamental physiological functions. The evolutionary mechanism of exon-acquisition and alternative splicing of the CHRM3 gene in relation to transposable elements (TEs) were analyzed using experimental approaches and in silico analysis. Five different transcript variants (T1, T2, T3, T3-1, and T4) derived from three distinct promoter regions (T1: L1HS, T2, T4: original, T3, T3-1: THE1C) were identified. A placenta (T1) and testis (T3 and T3-1)-dominated expression pattern appeared to be controlled by different TEs (L1HS and THE1C) that were integrated into the common ancestor genome during primate evolution. Remarkably, the T1 transcript was formed by the integration event of the human specific L1HS element. Among the 12 different brain regions, the brain stem, olfactory region, and cerebellum showed decreased expression patterns. Evolutionary analysis of splicing sites and alternative splicing suggested that the exon-acquisition event was determined by a selection and conservation mechanism. Furthermore, continuous integration events of transposable elements could produce lineage specific alternative transcripts by providing novel promoters and splicing sites. Taken together, exon-acquisition and alternative splicing events of CHRM3 genes were shown to have occurred through the continuous integration of transposable elements following conservation.
Keywords
alternative splicing; CHRM3 gene; exon-acquisition; L1HS element; transposable elements;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Dunn, C.A., and Mager, D.L. (2005). Transcription of the human and rodent SPAM1/PH-20 genes initiates within an ancient en-dogenous retrovirus. BMC Genomics 6, 47   DOI   PUBMED   ScienceOn
2 McClintock, B. (1956). Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 35, 243-251
3 Mills, R.E., Bennett, E.A., Iskow, R.C., Luttig, C.T., Tsui, C., Pittard, W.S., and Devine, S.E. (2006). Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78, 671-679   DOI   ScienceOn
4 Mills, R.E., Bennett, E.A., Iskow, R.C., and Devine, S.E. (2007). Which transposable elements are active in the human genome? Trends Genet. 23, 183-191   DOI   ScienceOn
5 Rio, D.C. (1990). Molecular mechanisms regulating Drosophila Pelement transposition. Ann. Rev. Gen. 24, 543-578   DOI   PUBMED   ScienceOn
6 Urrutia, A.O., Ocana, L.B., and Hurst, L.D. (2008) Do Alu repeats drive the evolution of the primate transcriptome? Genome Biol. 9, R25   DOI   PUBMED   ScienceOn
7 van de Lagemaat, L.N., Landry, J.R., Mager, D.L., and Medstrand, P. (2003). Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530-536   DOI   ScienceOn
8 Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T.D., Toyoda, A., Kuroki, Y., Noguchi, H., BenKahla, A., Lehrach, H., Sudbrak, R., et al. (2004). DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382-328   DOI   ScienceOn
9 Calarco, J.A., Xing, Y., Caceres, M., Calarco, J.P., Xiao, X., Pan, Q., Lee, C., Preuss, T.M., and Blencowe, B.J. (2007). Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963-2975   DOI   ScienceOn
10 Sverdlov, E.D. (2000). Retroviruses and primate evolution. Bioessays 22, 161-171   DOI   PUBMED   ScienceOn
11 Kitazawa, T., Hashiba, K., Cao, J., Unno, T., Komori, S., Yamada, M., Wess, J., and Taneike, T. (2007). Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur. J. Pharmacol. 554,212-222   DOI   PUBMED   ScienceOn
12 Braverman, A.S., Tallarida, R.J., and Ruggieri, M.R. (2008). The use of occupation isoboles for analysis of a response mediated by two receptors: M2 and M3 muscarinic receptor subtypeinduced mouse stomach contractions. J. Pharmacol. Exp. Ther. 325, 954-960   DOI   ScienceOn
13 Dunn, C.A., Medstrand, P., and Mager, D.L. (2003). An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. USA 100, 12841-12846   DOI   PUBMED   ScienceOn
14 Guo. Y., Traurig, M., Ma, L., Kobes, S., Harper, I., Infante, A.M., Bogardus, C., Baier, L.J., and Prochazka, M. (2006). CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 55, 3625-3629   DOI   ScienceOn
15 Grindley, N.D.F., and Reed, R.R. (1985). Transpositional recombi-nation in prokaryotes. Ann. Rev. Biochem. 54, 863-896   DOI   ScienceOn
16 Kim, D.S., Kim, T.H., Huh, J.W., Kim, I.C., Kim, S.W., Park, H.S., and Kim, H.S. (2006). LINE FUSION GENES: a database of LINE expression in human genes. BMC Genomics 7, 139   DOI   PUBMED   ScienceOn
17 Yamada, M., Miyakawa, T., Duttaroy, A., Yamanaka, A., Moriguchi, T., Makita, R., Ogawa, M., Chou, C.J., Xia, B., Crawley, J.N., et al. (2001). Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410, 207-212   DOI   ScienceOn
18 Zhang, H.M., Chen, S.R., Matsui, M., Gautam, D., Wess, J., and Pan, H.L. (2006). Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice. Mol. Pharmacol. 69, 1048-1055   DOI   PUBMED   ScienceOn
19 Brett, D., Hanke, J., Lehmann, G., Haase, S., Delbruck, S., Krueger, S., Reich, J., and Bork, P. (2000). EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474, 83-86   DOI   ScienceOn
20 Cammeron, J.R., Loh, E.Y., and Davis, R.W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16, 739-751   DOI   ScienceOn
21 International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921   DOI   ScienceOn
22 Forsythe, S.M., Kogut, P.C., McConville, J.F., Fu, Y., McCauley, J.A., Halayko, A.J., Liu, H.W., Kao, A., Fernandes, D.J., Bellam, S., et al. (2002). Structure and transcription of the human m3 muscarinic receptor gene. Am. J. Respir. Cell Mol. Biol. 26, 298-305   DOI   PUBMED   ScienceOn
23 Huh, J.W., Ha, H.S., Kim, D.S., and Kim, H.S. (2008). Placentarestricted expression of LTR-derived NOS3. Placenta 29, 602-608   DOI   ScienceOn
24 Wall, S.J., Yasuda, R.P., Li, M., and Wolfe, B.B. (1991). Development of an antiserum against m3 muscarinic receptors: distribution of m3 receptors in rat tissues and clonal cell lines. Mol. Pharmacol. 40, 783-789   PUBMED
25 Zhang, W., Yamada, M., Gomeza, J., Basile, A.S., and Wess, J. (2002). Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J. Neurosci. 22, 6347-6352
26 Dunn, C.A., Romanish, M.T., Gutierrez, L.E., van de Lagemaat, L.N., and Mager, D.L. (2006). Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 266, 335-342
27 Gautam, D., Duttaroy, A., Cui, Y., Han, S.J., Deng, C., Seeger, T., Alzheimer, C., and Wess, J. (2006). M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J. Mol. Neurosci. 30, 157-160   DOI   ScienceOn
28 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402   DOI   ScienceOn
29 Gerthoffer, W.T. (2005). Signal-transduction pathways that regulate visceral smooth muscle function. III. Coupling of muscarinic receptors to signaling kinases and effector proteins in gastrointestinal smooth muscles. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G849-853   DOI   PUBMED   ScienceOn
30 Zhang, H.M., Zhou, H.Y., Chen, S.R., Gautam, D., Wess, J., and Pan, H.L. (2007). Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice. J. Pharmacol. Exp. Ther. 232, 963-971   DOI   ScienceOn
31 Sela, N., Mersch, B., Gal-Mark, N., Lev-Maor, G., Hotz-Wagenblatt, A., and Ast, G. (2007). Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol. 8, R127   DOI   PUBMED
32 Matlik, K., Redik, K., and Speek, M. (2006). L1 antisense promoter drives tissue-specific transcription of human genes. J. Biomed. Biotechnol. 1, 71753   DOI
33 Renuka, T.R., Ani, D.V., and Paulose, C.S. (2004). Alterations in the muscarinic M1 and M3 receptor gene expression in the brain stem during pancreatic regeneration and insulin secretion in weanling rats. Life Sci. 75, 2269-2280   DOI   ScienceOn
34 Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420   DOI   ScienceOn
35 Matsui, M., Araki, Y., Karasawa, H., Matsubara, N., Taketo, M.M., and Seldin, M.F. (1999). Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet. Syst. 74, 15-21   DOI   ScienceOn
36 Bieche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Fausser, J.L., Evain-Brion, D., and Vidaud, M. (2003). Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol. Reprod. 68, 1422-1429   DOI   ScienceOn
37 Landry, J.R., and Mager, D.L. (2003). Functional analysis of the endogenous retroviral promoter of the human endothelin B re-ceptor gene. J. Virol. 77, 7459-7466   DOI   ScienceOn
38 Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291   DOI   PUBMED   ScienceOn
39 Speek, M. (2001). Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973-1985   DOI   PUBMED   ScienceOn