Browse > Article
http://dx.doi.org/10.1007/s10059-009-0043-x

Quantitative and Rapid Analysis of Transglutaminase Activity Using Protein Arrays in Mammalian Cells  

Kwon, Mi-Hye (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Jung, Jae-Wan (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Jung, Se-Hui (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Park, Jin-Young (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Kim, Young-Myeong (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry and Vascular System Research Center, Kangwon National University School of Medicine)
Abstract
We developed a novel on-chip activity assay using protein arrays for quantitative and rapid analysis of transglutaminase activity in mammalian cells. Transglutaminases are a family of $Ca^{2+}$-dependent enzymes involved in cell regulation as well as human diseases such as neurodegenerative disorders, inflammatory diseases and tumor progression. We fabricated the protein arrays by immobilizing N,N'-dimethylcasein (a substrate) on the amine surface of the arrays. We initiated transamidating reaction on the protein arrays and determined the transglutaminase activity by analyzing the fluorescence intensity of biotinylated casein. The on-chip transglutaminase activity assay was proved to be much more sensitive than the $[^3H]putrescine$-incorporation assay. We successfully applied the on-chip assay to a rapid and quantitative analysis of the transglutaminase activity in all-trans retinoic acid-treated NIH 3T3 and SH-SY5Y cells. In addition, the on-chip transglutaminase activity assay was sufficiently sensitive to determine the transglutaminase activity in eleven mammalian cell lines. Thus, this novel on-chip transglutaminase activity assay was confirmed to be a sensitive and high-throughput approach to investigating the roles of transglutaminase in cellular signaling, and, moreover, it is likely to have a strong potential for monitoring human diseases.
Keywords
all-trans retinoic acid; on-chip activity assay; protein arrays; putrescine-incorporation assay; transglutaminase activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Esposito, C., and Caputo, I. (2005). Mammalian transglutaminases. Identification of substrates as key to physiological function and physiopathological relevance. FEBS J. 272, 615 -631   DOI   PUBMED   ScienceOn
2 Griffin, M., Casadio, R., and Bergamini, C.M. (2002). Transglutaminases: nature's biological glues. Biochem. J. 368, 377-396   DOI   PUBMED   ScienceOn
3 Jeon, J.-H., Kim, C.-W., Shin, D.-M., Cho, S.-Y., Jang, G.-Y., Lee, H.-J., and Kim, I.-G. (2006). Colorimetric transglutaminase assays combined with immunological signal amplification. Anal. Biochem. 348, 327-329   DOI   PUBMED   ScienceOn
4 Kotsakis, P., and Griffin, M. (2007). Tissue transglutaminase in tumour progression: friend or foe? Amino Acids 33, 373-384   DOI   PUBMED
5 Ruan, Q., and Johnson, G.V. (2007). Transglutaminase 2 in neurodegenerative disorders. Front. Biosci. 12, 891-904   DOI   PUBMED
6 Verderio, E.A., Johnson, T., and Griffin, M. (2004). Tissue Transglutaminase in normal and abnormal wound healing: review article. Amino Acids 26, 387-404   PUBMED
7 Walther, D.J., Peter, J.-U., Winter, S., Holtje, M., Paulmann, N., Grohmann, M., Vowinckel, J., Alamo-Bethencourt, V., Wilhelm, C.S., Ahnert-Hilger, G., et al. (2003). Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell 115, 851-862   DOI   PUBMED   ScienceOn
8 Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684   DOI   PUBMED   ScienceOn
9 De Mace do, P., Marrano, C., and Keillor, J.W. (2000). A direct continuous spectrophotometric assay for transglutaminase activity. Anal. Biochem. 285, 16-20   DOI   PUBMED   ScienceOn
10 Tucholski, J., and Johnson, G.V.W. (2003). Tissue transglutaminase directly regulates adenylyl cyclase resulting in enhanced cAMP-response element-binding protein (CREB) activation. J. Biol. Chem. 278, 26838-26843   DOI   ScienceOn
11 Martin, K., Steinberg, T.H., Cooley, L.A., Gee, K.R., Beechem, J.M., and Patton, W.F. (2003). Quantitative analysis of protein phosphorylation status and protein kinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3, 1244-1255   DOI   PUBMED   ScienceOn
12 Kim, S.Y. (2006). Transglutaminase 2 in inflammation. Front. Biosci. 11, 3026-3035   DOI   PUBMED
13 Sane, D.C., Kontos, J.L., and Greenberg, C.S. (2007). Roles of transglutaminases in cardiac and vascular disease. Front. Biosci. 12, 2530-2545   DOI   PUBMED
14 Zhang, J., Lesort, M., Guttmann, R.P., and Johnson, G.V. (1998). Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J. Biol. Chem. 273, 2288-2295   DOI   ScienceOn
15 Schmidinger, H., Hermetter, A., and Birner-Gruenberger, R. (2006). Activity-based proteomics: enzymatic activity profiling in complex proteomes. Amino Acids 30, 333-350   PUBMED
16 MacBeath, G., and Schreiber, S.L. (2000). Printing proteins as microarrays for high-throughput function determination. Science 289, 1760-1763
17 Houseman, B.T., Huh, J.H., Kron, S.J., and Mrksich, M. (2002). Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270-274   DOI   PUBMED   ScienceOn
18 Machida, K., Thompson, C.M., Dierck, K., Jablonowski, K., Karkkainen, S., Liu, B., Zhang, H., Nash, P.D., Newman, D.K., Nollau, P., et al. (2007). High-throughput phosphotyrosine profiling using SH2 domains. Mol. Cell 26, 899-915   DOI   PUBMED   ScienceOn
19 Antonyak, M.A., Jansen, J.M., Miller, A.M., Ly, T.K., Endo, M., and Cerione, R.A. (2006). Two isoforms of tissue transglutaminase mediate opposing cellular fates. Proc. Natl. Acad. Sci. USA 103, 18609-18614   DOI   PUBMED   ScienceOn
20 Kim, H.-S., Jung, S.-H., Kim, S.-H., Suh, I.-B., Kim, W.-J., Jung , J.-W., Yuk, J.S., Kim, Y.-M., and Ha, K.-S. (2006). High-throughput analysis of mumps virus and the virus-specific monoclonal antibody on the arrays of a cationic polyelectrolyte with a spectral SPR biosensor. Proteomics 6, 6426-6432   DOI   PUBMED   ScienceOn
21 Reif, S., and Lerner, A. (2004). Tissue transglutaminase - the key player in celiac disease: a review. Autoimmun. Rev. 3, 40-45   DOI   ScienceOn
22 Sadaghiani, A.M., Verhelst, S.H., and Bogyo, M. (2007). Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20-28   DOI   ScienceOn
23 Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstein, M., Reed, M.A., and Snyder, M. (2000). Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283-289   DOI   ScienceOn
24 Gillet, S.M.F.G., Pelletier, J.N., and Keillor, J.W. (2007). A direct fluouorometric assay for tissue transglutaminase. Anal. Biochem. 347, 221-226   DOI   PUBMED   ScienceOn
25 Jeon, J.-H., Choi, K.-H., Cho, S.-Y., Kim, C.-W., Shin, D.-M., Kwon, J.-C., Song, K.-Y., Park, S.-C., and Kim, I.-G. (2003). Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. EMBO J. 22, 5273-5282   DOI   PUBMED   ScienceOn
26 Karpati, L., Penke, B., Katona, E., Balogh, I., Vamosi, G., and Muszbek, L. (2000). A modified, optimized kinetic photometric assay for the determination of blood coagulation factor XIII activity in plasma. Clin. Chem. 46, 1946-1955   PUBMED
27 Wu, Y.-W., and Tsai, Y.-H (2006). A rapid transglutaminase assay for high-throughput screening applications. J. Biomol. Screen. 11, 836-843   DOI   ScienceOn
28 Yi, S.-J., Kim, K.H., Choi, H.J., Yoo, J.O., Jung, H.-I., Han, J.-A., Kim, Y.-M., Suh, I.B., and Ha, K.-S. (2006). $[Ca(2+)]$-dependent generation of intracellular reactive oxygen species mediates maitotoxin-induced cellular responses in human umbilical vein endothelial cells. Mol. Cells 21, 121-128   PUBMED
29 Shigaki, S., Yamaji, T., Han, X., Yamanouchi, G., Sonoda, T., Okitsu, O., Mori, T., Niidome, T., and Katayama, Y. (2007). A peptide microarray for the detection of protein kinase activity in cell lysate. Anal. Sci. 23, 271-275   DOI   ScienceOn
30 Trigwell, S.M., Lynch, P.T., Griffin, M., Hargreaves, A.J., and Bonner, P.L.R. (2004). An improved colorimetric assay for the measurement of transglutaminase (type II) $\varepsilon$-($\gamma$-glutamyl) lysine cross-linking activity. Anal. Biochem. 330, 164-166   DOI   PUBMED   ScienceOn