Browse > Article
http://dx.doi.org/10.1007/s10059-009-0040-0

Successful Application of the Dual-Vector System II in Creating a Reliable Phage-Displayed Combinatorial Fab Library  

Song, Suk-yoon (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University)
Hur, Byung-ung (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University)
Lee, Kyung-woo (IG Therapy Co., Kangwon National University)
Choi, Hyo-jung (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University)
Kim, Sung-soo (Department of Pharmacology, School of Medicine, Kangwon National University)
Kang, Goo (Department of Pathology, School of Medicine, Kangwon National University)
Cha, Sang-hoon (Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University)
Abstract
The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a $1.3{\times}10^7$ combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a $1.5{\times}10^9$ combinatorial antibody complexity, was also generated in a rapid manner by combining $1.3{\times}10^7$ heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecules.
Keywords
dual-vector system; Ex12 helper phage; Fab; human antibody; phage display technology;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Biard-Piechaczyk, M., Teulon, I., Peraldi-Roux, S., Del Rio, M., Pau, B., and Embleton, J. (1999). Human single-chain Fv fragments from a combinatorial library using the loxP-Cre recombination system. Hum. Antibodies. 9, 67-77   DOI   PUBMED
2 Czerwinski, M., Siemaszko, D., Siegel, D.L., and Spitalnik, S.L. (1998). Only selected light chains combine with a given heavy chain to confer specificity for a model glycopeptide antigen. J. Immunol. 160, 4406-4417   PUBMED
3 Geoffroy, F., Sodoyer, R., and Aujame, L. (1994). A new phage display system to construct multicombinatorial libraries of very large antibody repertoires. Gene 151, 109-113   DOI   ScienceOn
4 Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.A., Waterhouse, P.E., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., et al. (1994). Isolation of high affinity human anti-bodies directly from large synthetic repertoires. EMBO J. 13, 3245-3260   PUBMED
5 Michelsen, B.K. (1995). Transformation of Escherichia coli increases 260-fold upon inactivation of T4 DNA ligase. Anal. Biochem. 225, 172-174   DOI   PUBMED   ScienceOn
6 Rothe, C., Urlinger, S., L$\ddot{o}$hning, C., Prassler, J., Stark, Y., Jager, U., Hubner, B., Bardroff, M., Pradel, I., Boss, M., et al. (2008). The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J. Mol. Biol. PTS, 1182-1200   DOI   ScienceOn
7 Arakawa, M., Yamashiro, T., Uechi, G., Tadano, M., and Nishizono, A. (2007). Construction of human Fab (gamma1/kappa) library and identification of human monoclonal Fab possessing neutralizing potency against Japanese encephalitis virus. Microbiol. Immunol. 51, 617-625   PUBMED
8 Lee, C.V., Liang, W.C., Dennis, M.S., Eigenbrot, C., Sidhu, S.S., and Fuh, G. (2004). High-affinity human antibodies from phagedisplayed synthetic Fab libraries with a single framework scaffold. J. Mol. Biol. 340, 1073-1093   DOI   PUBMED   ScienceOn
9 Gavilondo, J.V., and Larrick, J.W. (2000). Antibody engineering at the millennium. BioTechniques 29, 128-145   PUBMED
10 Marks, J.D., and Bradbury, A. (2004). Selection of human antibodies from phage display libraries. Methods Mol. Biol. 248, 161-176   PUBMED
11 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. (1991). By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581-589   DOI
12 Cen, X., Bi, Q., and Zhu, S. (2006). Construction of a large phage display antibody library by in vitro package and áå=îáîç recombination. Appl. Microbiol. Biotechnol. 71, 767-772   DOI   PUBMED
13 Joo, H.Y., Hur, B.U., Lee, K.W., Song, S.Y., and Cha, S.H. (2008). Establishment of a reliable dual-vector system for the phage display of antibody fragments. J. Immunol. Methods 333, 24-37   DOI   PUBMED   ScienceOn
14 Sidhu, S.S., Li, B, Chen, Y., Fellouse, F.A., Eigenbrot, C., and Fuh, G. (2004). Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions. J. Mol. Biol. 338, 299-310   DOI   PUBMED   ScienceOn
15 Oh, M.Y., Joo, H.Y., Hur, B.U., Jeong, Y.H., and Cha, S.H. (2007). Enhancing phage display of antibody fragments using gIIIamber suppression. Gene 386, 81-89   DOI   PUBMED   ScienceOn
16 Tsurushita, N., Fu, H., and Warren, C. (1996). Phage display vectors for in vivo recombination of immunoglobulin heavy and light chain genes to make large combinatorial libraries. Gene 172, 59-63   DOI   ScienceOn
17 Song, S., Zhang, T., Qi, W., Zhao, W., Xu, B., and Liu, J. (1993). Transformation of Escherichia coli with foreign DNA by electroporation. Chin. J. Biotechnol. 9, 197-201   PUBMED
18 Dower, W.J., Miller, J.F., and Ragsdale, C.W. (1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127-6145   DOI   ScienceOn
19 McCafferty, J. (1996). Phage display: factors affecting panning efficiency. In Phage Display of Peptides and Proteins: A Laboratory Manual, B.K. Kay, J. Winter, and J. McCafferty, eds. (California, USA: Academic Press), pp. 261-276
20 Chapman, C.J., Mockridge, C.I., Spellerberg, M.B., Zhu, D., and Stevenson, F.K. (1997). Phage surface expression for analysis of recognition sites of human autoantibodies: comparison of single chain Fv and Fab. Hum. Antibodies 8, 124-128   DOI   PUBMED
21 Sblattero, D., and Bradbury, A. (2000). Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18, 75-80   DOI   PUBMED   ScienceOn
22 Zahra, D.G., Vancov, T., Dunn, J.M., Hawkins, N.J., and Ward, R.L. (1999). Selectable in-vivo recombination to increase antibody library size--an improved phage display vector system. Gene 227, 49-54   DOI   ScienceOn
23 Hong, S.H., Lee, M.S., Park, S., Kim, H.I., Shin, H.J., Kwon, M.H., and Kim, K.H. (2004). A phagemid system enabling easy estimation of the combinatorial antibody library size. Immunol. Lett. 91, 247-253   DOI   PUBMED   ScienceOn
24 Kwon, M.H., Lee, M.S., Hong, S.H., Kim, K.H., Shin, H.J., Park, S., Lee, C.H., and Kim, H.I. (2003). A visible phagemid system for the estimation of Cre-mediated recombination efficiency. J. Immunol. Methods 280, 165-173   DOI   ScienceOn
25 Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd ed., (New York, USA: Cold Spring Harbor Laboratory Press)
26 Nissim, A., Hoogenboom, N.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., and Winter, G. (1994). Antibody fragments from a 'single pot' phage display library as immunological reagents. EMBO J. 13, 692-698   PUBMED
27 Ostermeier, M., and Benkovic, S.J. (2000). A two-phagemid system for the creation of non-phage displayed antibody libraries approaching one trillion members. J. Immunol. Methods 237, 175-186   DOI   ScienceOn
28 Rojas, G., Almagro, J.C., Acevedo, B., and Gavilondo, J.V. (2002). Phage antibody fragments library combining a single human light chain variable region with immune mouse heavy chain variable regions. J. Biotechnol. 94, 287-298   DOI   ScienceOn
29 Waterhouse, P., Griffiths, A.D., Johnson, K.S., and Winter, G. (1993). Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res. 21, 2265-2266   DOI   PUBMED
30 Hoet, R.M., Cohen, E.H., Kent, R.B., Rookey, K., Schoonbroodt, S., Hogan, S., Rem, L., Frans, N., Daukandt, M., Pieters, H., et al. (2005). Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determiningregion diversity. Nat. Biotechnol. 23, 344-348   DOI   PUBMED   ScienceOn
31 Malone, J., and Sullivan, M.A. (1996). Analysis of antibody selection by phage display utilizing anti-phenobarbital antibodies. J. Mol. Recognit. 9, 738-745   DOI   ScienceOn
32 Smith, G.P. (1988). Filamentous phages as cloning vectors. Biotechnology. 10, 61-83   PUBMED
33 Collet, T.A., Roben, P., O'Kennedy, R., Barbas, C.F.3rd, Burton, D.R., and Lerner, R.A. (1992). A binary plasmid system for shuffling combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 89, 10026-10030   DOI   ScienceOn