Browse > Article
http://dx.doi.org/10.1007/s10059-009-0019-x

Reduction-Sensitive and Cysteine Residue-Mediated Streptococcus pneumoniae HrcA Oligomerization In Vitro  

Kwon, Hyog-Young (College of Pharmacy, Sungkyunkwan University)
Kim, Eun-Hye (College of Pharmacy, Sungkyunkwan University)
Tran, Thao Dang Hien (College of Pharmacy, Sungkyunkwan University)
Pyo, Suhk-Neung (College of Pharmacy, Sungkyunkwan University)
Rhee, Dong-Kwon (College of Pharmacy, Sungkyunkwan University)
Abstract
In both gram-positive and several gram-negative bacteria, the transcription of dnaK and groE operons is negatively regulated by HrcA; however, the mechanism modulating HrcA protein activity upon thermal stress remains elusive. Here, we demonstrate that HrcA is modulated via reduction and oligomerization in vitro. Native-PAGE analysis was used to reveal the oligomeric structure of HrcA. The oligomeric HrcA structure became monomeric following treatment with the reducing agent dithothreitol, and this process was reversed by treatment with hydrogen peroxide. Moreover, the mutant HrcA C118S exhibited reduced binding to CIRCE elements and became less oligomerized, suggesting that cysteine residue 118 is important for CIRCE element binding as well as oligomerization. Conversely, HrcA mutant C280S exhibited increased oligomerization. An HrcA double mutant (C118S, C280S) was monomeric and exhibited a level of oligomerization and CIRCE binding similar to wild type HrcA, suggesting that cysteine residues 118 and 280 may function as checks to one another during oligomer formation. Biochemical fractionation of E. coli cells overexpressing HrcA revealed the presence of HrcA in the membrane fraction. Together, these results suggest that the two HrcA cysteine residues at positions 118 and 280 function as reduction sensors in the membrane and mediate oligomerization upon stress.
Keywords
dnaK; groEL; heat shock response; HrcA; Streptococcus pneumoniae;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ahmad, S., Selvapandiyan, A., and Bhantnagar, R.K. (1999). A protein-based phylogenetic tree for gram-positive bacteria derived from hrcA, a unique heat-shock regulatory gene. Int. J. Syst. Bacteriol. 49, 1387-1394   DOI
2 Chastanet, A., Fert, J., and Msadek, T. (2003). Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Mol. Microbiol. 47, 1061-1073   DOI   PUBMED   ScienceOn
3 Fukuda, M., Kanno, E., and Mikoshiba, K. (1999). Conserved Nterminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X. J. Biol. Chem. 274, 31421-31427   DOI
4 Jha, B.K., Salunke, D.M., and Datta, K. (2002). Disulfide bond formation through Cys186 facilitates functionally relevant dimerization of trimeric hyaluronan-binding protein 1 (HABP1)/ p32/gC1qR. Eur. J. Biochem. 269, 298-306   DOI   PUBMED   ScienceOn
5 Kwon, H.Y., Kim, S.N., Pyo, S.N., and Rhee, D.K. (2005). $Ca^{2+}$- dependent expression of the CIRCE regulon in Streptococcus pneumoniae. Mol. Microbiol. 55, 456-468   DOI   PUBMED   ScienceOn
6 Liu, Q., Krzewska, J., Liberek, K., and Craig, E.A. (2001). Mitochondrial Hsp70 Ssc1: role in protein folding. J. Biol. Chem. 276, 6112-6118   DOI   PUBMED   ScienceOn
7 Minder, A.C., Fischer, H.M., Hennecke, H., and Narberhaus, F. (2000). Role of HrcA and CIRCE in the heat shock regulatory network of Bradyrhizobium japonicum. J. Bacteriol. 182, 14-22   DOI   PUBMED
8 Mogk, A., Volker, A., Engelmann, S., Hecker, M., Schumann, W., and Volker, U. (1998). Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180, 2895-2900   PUBMED
9 Morrison, D.A., Lacks, S.A., Guild, W.R., and Hageman, J.M. (1983). Isolation and characterization of three new classes of transformation deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J. Bacteriol. 156, 281-290   PUBMED
10 Nagy, E., Balogi, Z., Gombos, I., Akerfelt, M., Bjorkbom, A., Balogh, G., Torok, Z., Maslyanko, A., Fiszer-Kierzkowska, A., Lisowska, K., et al. (2007). Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc. Natl. Acad. Sci. USA 104, 7945-7950   DOI   PUBMED   ScienceOn
11 Narberhaus, F. (1999). Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31, 1-8   DOI   PUBMED   ScienceOn
12 Watanabe, K., Yamamoto, T., and Suzuki, Y. (2001). Renaturation of Bacillus thermoglucosidasius HrcA repressor by DNA and thermostability of the HrcA-DNA complex in vitro. J. Bacteriol. 183, 155-161   DOI   ScienceOn
13 Schulz, A., and Schumann, W. (1996). hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J. Bacteriol. 178, 1088-1093   DOI   PUBMED
14 Vigh, L., Maresca, B., and Harwood, J. (1998). Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 23, 369-373   DOI   ScienceOn
15 Vigh, L., Torok, Z., Balogh, G., Glatz, A., Piotto, S., and Horvath, I. (2007). Molecular Aspects of the Stress Response: Chaperones, Membrances and Networks. P., Csermely, and L., Vigh, eds. (New York: Springer), pp. 114-131
16 Stintzi, A., Marlow, D., Palyada, K., Naikare, H., Panciera, R., Whitworth, L., and Clarke, C. (2005). Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter Infect. Immun. 73, 1797-1810   DOI   ScienceOn
17 Fehri, L.F., Sirand-Pugnet, P., Gourgues, G., Jan, G., Wroblewski, H., and Blanchard, A. (2005). Resistance to antimicrobial peptides and stress response in Mycoplasma pulmonis. Antimicrob. Agents Chemother. 49, 4154-4165   DOI   PUBMED   ScienceOn
18 Neidhardt, F.C., and VanBogelen, R.A. (1987). E. coli and Salmonella typhimurium: Cellular and Molecular Biology. F.C., Neidhardt, et al. ed. (Washington, DC: American Society for Microbiology Press), pp. 1334-1345
19 Schindler, J., Jung, S., Niedner-Schatteburg, G., Friauf, E., and Nothwang, H.G. (2006). Enrichment of integral membrane proteins from small amounts of brain tissue. J. Neural. Transm. 113, 995-1013   DOI   ScienceOn
20 Horvath, I., Glatz, A., Varvasovszki, V., Torok, Z., Pali, T., Balogh, G., Kovacs, E., Nadasdi, L., Benko, S., Joo, F., et al. (1998). Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a 'fluidity gene'. Proc. Natl. Acad. Sci. USA 95, 3513-3518   DOI
21 Servant, P., and Mazodier, P. (2001). Negative regulation of the heat shock response in Streptomyces. Arch. Microbiol. 176, 237-242   DOI   PUBMED
22 Gottesman, S., Wickner, S., and Maurizi, M.R. (1997). Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815-823   DOI   ScienceOn
23 Roncarati, D., Spohn, G., Tango, N., Danielli, A., Delany, I., and Scarlato, V. (2007). Expression, purification and characterization of the membrane-associated HrcA repressor protein of Helicobacter pylori. Protein Expr. Purif. 51, 267-275   DOI   PUBMED   ScienceOn
24 Hecker, M., Schumann, W., and Voker, U. (1996). Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19, 417-428   DOI
25 Hitomi, M., Nishimura, H., Tsujimoto, Y., Matsui, H., and Watanabe, K. (2003). Identification of a helix-turn-helix motif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element and thermostability of the HrcA-CIRCE complex, indicating a role as a thermosensor. J. Bacteriol. 185, 381-385   DOI   PUBMED
26 Liu, J., Huang, C., Shin, D.H., Yokota, H., Jancarik, J., Kim, J.S., Adams, P.D., Kim, R., and Kim, S.H. (2005). Crystal structure of a heat-inducible transcriptional repressor HrcA from Thermotoga maritima: structural insight into DNA binding and dimerization. J. Mol. Biol. 350, 987-996   DOI   ScienceOn
27 Reischl, S., Wiegert, T., and Schumann, W. (2002). Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J. Biol. Chem. 277, 32659-32667   DOI   ScienceOn
28 Van Dijl, J.M., De Jong, A., Smith, H., Bron, S., and Venema G. (1991). Non-functional expression of Escherichia coli signal peptidase I in Bacillus. J. Gen. Microbiol. 137, 2073-2083   DOI
29 Akita, M., Nielsen, E., and Keegstra, K. (1997). Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J. Cell Biol. 136, 983-994   DOI   ScienceOn
30 Martirani, L., Raniello, R., Naclerio, G., Ricca, E., and De Felice, M. (2001). Identification of the DNA-binding protein, HrcA, of Streptococcus thermophilus. FEMS Microbiol. Lett. 198, 177-182   DOI   PUBMED
31 Yuan, G., and Wong, S. (1995). Isolation and charaterization of Bacillus subtilis regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and danK. J. Bacteriol. 177, 6462-6468   DOI   PUBMED
32 Bukau, B. (1993). Regulation of the Escherichia coli heat shock response. Mol. Microbiol. 9, 671-680   DOI   ScienceOn
33 Garnier, C., Barbier, P., Devred, F., Rivas, G., and Peyrot, V. (2002). Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: effects of divalent cations. Biochemistry 41, 11770-11778   DOI   PUBMED   ScienceOn
34 Susin, M.F., Perez, H.R., Baldini, R.L., and Gomes, S.L. (2004). Functional and structural analysis of HrcA repressor protein from Caulobacter crescentus. J. Bacteriol.186, 6759-6767   DOI   PUBMED   ScienceOn
35 Nielsen, E., Akita, M., Davila-Aponte, J., and Keegstra, K. (1997). Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16, 935-946   DOI   PUBMED   ScienceOn
36 Hu, Y., Oliver, H.F., Raengpradub, S., Palmer, M.E., Orsi, R.H., Wiedmann, M., and Boor, K.J. (2007). Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and sigmaB in Listeria monocyto-genes. Appl. Environ. Microbiol. 73, 7981-7991   DOI   PUBMED   ScienceOn
37 McClellan, A.J., Endres, J.B., Vogel, J.P., Palazzi, D., Rose, M.D., and Brodsky, J.L. (1998). Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol. Biol. Cell 9, 3533-3545   DOI   PUBMED
38 Okazaki, A., Ikura, T., Nikaido, K., and Kuwajima, K. (1994). The chaperonin GroEL does not recognize apo-alpha-lactalbumin in the molten globule state. Nat. Struct. Biol. 1, 439-446   DOI   PUBMED
39 Lin, Z., Schwartz, F.P., and Eisenstein, E. (1995). The hydrophobic nature of GroEL-substrate binding. J. Biol. Chem. 270, 1011-1014   DOI   ScienceOn
40 Zhao, Y., Zhang, W., Kho, Y., and Zhao, Y. (2004). Proteomic analysis of integral plasma membrane proteins. Anal. Chem. 76, 1817-1823   DOI   ScienceOn
41 Oggioni, M.R., Trappetti, C., Kadioglu, A., Cassone, M., Iannelli, F., Ricci, S., Andrew, P.W., and Pozzi, G. (2006). Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol. Microbiol. 61, 1196-1210   DOI
42 Choi, I.H., Shim, J.H., Kim, S.W., Kim, S.N., Pyo, S.N., and Rhee, D.K. (1999). Limited stress response in Staphylococcus pnenmoniae. Microbiol. Immunol. 43, 807-812   DOI   PUBMED
43 Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685   DOI   ScienceOn
44 Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F.X., and Schumann, W. (1997). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16, 4579-4590   DOI   ScienceOn
45 Morimoto, R.I., Tissieres, A., and Georgopoulos, C. (1994). The Biology of Heat Shock Proteins and Molecular Chaperones. (Cold Spring Harbor, NY; Cold Spring Harbor Press)
46 Kim, S.N., Kim, S.W., Pyo, S.N., and Rhee, D.K. (2001). Molecular cloning and characterization of groESL operon in Streptococcus pneumoniae. Mol. Cells 11, 360-368   PUBMED
47 Lim, J.H., Martin, F., Guiard, B., Pfanner, N., and Voos, W. (2001). The mitochondrial Hsp70-dependent import system actively unfolds preproteins and shortens the lag phase of translocation. EMBO J. 20, 941-950   DOI   PUBMED   ScienceOn
48 Wilson, A.C., and Tan, M. (2002). Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis J. Bacteriol. 184, 6566-6571   DOI
49 Aruna, B., Ghosh, S., Singh, A.K., Mande, S.C., Srinivas, V., Chauhan, R., and Ehtesham, N.Z. (2003). Human recombinant resistin protein displays a tendency to aggregate by forming intermolecular disulfide linkages. Biochemistry 42, 10554-10559   DOI   PUBMED   ScienceOn
50 Wiegert, T., and Schumann, W. (2003). Analysis of a DNA-binding motif of the Bacillus subtilis HrcA repressor protein. FEMS Microbiol. Lett. 223, 101-106   DOI   ScienceOn