Browse > Article
http://dx.doi.org/10.1007/s10059-009-0018-y

Sustained Viral Activity of Epstein-Barr Virus Contributes to Cellular Immortalization of Lymphoblastoid Cell Lines  

Jeon, Jae-Pil (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention)
Nam, Hye-Young (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention)
Shim, Sung-Mi (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention)
Han, Bok-Ghee (Korea BioBank, Center for Genome Science, Korea National Institute of Health, Korea Center for Disease Control and Prevention)
Abstract
EBV-transformed lymphoblastoid cell lines (LCLs) are used as a resource for human genetic, immunological, and pharmacogenomic studies. We investigated the biological activity of 20 LCL strains during continuous long-term subculture up to a passage number of 160. Out of 20 LCL strains, 17 proliferated up to a passage number of 160, at which point LCLs are generally considered as "immortalized". The other three LCL strains lost the ability to proliferate at an average passage number of 41, during which these LCLs may have undergone cellular crisis. These non-immortal LCL strains exhibited no telomerase activity, decreased EBV gene expression, and a lower copy number of the EBV genome and mitochondrial DNA when compared with immortal LCLs. Thus, this study suggests that sustained EBV viral activity as well as telomerase activity may be required for complete LCL immortalization.
Keywords
EBV; immortalization; lymphoblastoid cell line;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Belair, C.D., Yeager, T.R., Lopez, P.M., and Reznikoff, C.A. (1997). Telomerase activity: A biomarker of cell proliferation, not malignant transformation. Proc. Natl. Acad. Sci. USA 94, 13677-13682   DOI
2 Cooper, A., Johannsen, E., Maruo, S., Cahir-McFarland, E., Illanes, D., Davidson, D., and Kieff, E. (2003). EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virustransformed lymphoblast growth. J. Virol. 77, 999-1010   DOI   PUBMED
3 Eliopoulos, A.G., and Young, L.S. (2001). LMP1 structure and signal transduction. Semin. Cancer Biol. 11, 435-444   DOI   ScienceOn
4 Hahn, W.C. (2002). Immortalization and transformation of human cells. Mol. Cells 13, 351-361   PUBMED
5 Hur, D.Y., Lee, M.H., Kim, J.W., Kim, J.H., Shin, Y.K., Rho. J.K., Kwack, K.B., Lee, W.J., and Han, B.G. (2005). CD19 signalling improves the Epstein-Barr virus-induced immortalization of human B cell. Cell Prolif. 38, 35-45   DOI   PUBMED   ScienceOn
6 Jeon, J.P., Kim, J.W., Park, B., Nam, H.Y., Shim, S.M., Lee, M.H., and Han, B.G.. (2008) Identification of tumor necrosis factor signaling-related proteins during Epstein-Barr virus-induced B cell transformation. Acta Virologica 52,151-159   PUBMED
7 Kamranvar, S.A., Gruhne, B., Szeles, A., and Masucci, M.G. (2007). Epstein-Barr virus promotes genomic instability in Burkitt's lymphoma. Oncogene 26, 5115-5123   DOI   ScienceOn
8 McClain, K., Estrov, Z., Raju, U., Kelley, P.K., and Aggarwal, B.B. (1997). Epstein-Barr virus EBNA-2 gene expression enhances lymphotoxin production by B lymphocytes. Methods 11, 83-87   DOI   PUBMED   ScienceOn
9 Mei, Y.P., Zhu, X.F., Zhou, J.M., Huang, H., Deng, R., and Zeng, Y.X. (2006). siRNA targeting LMP1-induced apoptosis in EBVpositive lymphoma cells is associated with inhibition of telomerase activity and expression. Cancer Lett. 232, 189-198   DOI   ScienceOn
10 Mochida, A., Gotoh, E., Senpuku, H., Harada, S., Kitamura, R., Takahashi, T., and Yanagi, K. (2005). Telomere size and telomerase activity in Epstein-Barr virus (EBV)-positive and EBVnegative Burkitt's lymphoma cell lines. Arch. Virol. 150, 2139-2150   DOI   PUBMED
11 Rodriguez-Revenga, L., Mila, M., Rosenberg, C., Lamb, A., and Lee, C. (2007). Structural variation in the human genome: the impact of copy number variants on clinical diagnosis. Genet. Med. 9, 600-606   DOI   PUBMED   ScienceOn
12 Toda, T., and Sugimoto, M. (2003). Proteome analysis of Epstein- Barr virus-transformed B-lymphoblasts and the proteome database. J. Chromatography B. 787, 197-206   DOI   ScienceOn
13 Yoo, Y.K., Ke, X., Hong, S., Jang, H.Y., Park, K., Kim, S., Ahn, T., Lee, Y.D., Song, O., Rho, N.Y., et al. (2006). Fine-scale map of encyclopedia of DNA elements regions in the Korean population. Genetics 174, 491-497   DOI   PUBMED   ScienceOn
14 Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757-768   DOI   PUBMED   ScienceOn
15 Sugimoto, M., Furuichi, Y., Ide, T., and Goto, M. (1999). Incorrect us of 'immortalization' for B-lymphoblastoid cell lines transformed by Epstein-Barr virus. J. Virol. 73, 9690-9691   PUBMED
16 Zhang, L., Hong, K., Zhang, J., and Pagano, J.S. (2004). Multiple signal transducers and activators of transcription are induced by EBV LMP-1. Virology 323, 141-152   DOI   ScienceOn
17 Hei, T.K., Persaud, R., Zhou, H., and Suzuki, M. (2004) Genotoxicity in eyes of bystander cells. Mutat. Res. 568, 111-120   DOI   PUBMED   ScienceOn
18 Srinivas, S.K., and Sixbey, J.W. (1995). Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J. Virol. 69, 8155-8158   PUBMED
19 Cahir-McFarland, E.D., Carter, K., Rosenwald, A., Giltnane, J.M., Henrickson, S.E., Staudt, L.M., and Kieff, E. (2004). Role of NF-{kappa}B in cell survival and transcription of latent membrane protein 1-expressing or epstein-Barr virus latency III-infected Cells. J. Virol. 78, 4108-4119   DOI
20 Saito, N., Courtois, G., Chiba, A., Yamamoto, N., Nitta, T., Hironaka, N., Rowe, M., Yamamoto, N., and Yamaoka, S. (2003). Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-$_{\kappa}$B through distinct signaling pathways in fibroblast cell lines. J. Biol. Chem. 278, 46565-46575   DOI   PUBMED   ScienceOn
21 Liu, J.P., Cassar, L., Pinto, A., and Li, H. (2006). Mechanisms of cell immortalization mediated by EB viral activation of telomerase in nasopharyngeal carcinoma. Cell Res. 16, 809-817   DOI   ScienceOn
22 Robertson, E.S., Lin, J., and Kieff, E. (1996). The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol. 70, 3068-3074   PUBMED
23 Jeon, J.P., Shim, S.M., Nam, H.Y., Baik, S.Y., Kim. J.W., and Han, B.G. (2007). Copy number increase of 1p36.33 and mitochondrial genome amplification in Epstein-Barr virus-transformed lymphoblastoid cell lines. Cancer Genet. Cytogenet. 173, 122-130   DOI   ScienceOn
24 Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., and Takada, K. (1994). Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J. Virol. 68, 6069-6073   PUBMED
25 Kieff, E., and Rickinson, A.B. (2001). In Fields Virology, D.M. Knipe, and P.M. Howley, eds. (Lippincott, Philadelphia, USA). Vol. 2, pp. 2511-2628
26 Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700-1709   DOI   PUBMED   ScienceOn
27 Sugimoto, M., Tahara, H., Ide, T., and Furuichi, Y. (2004). Steps involved in immortalization and tumorigenesis in human Blymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res. 64, 3361-3364   DOI   PUBMED   ScienceOn
28 Zhao, B., Maruo, S., Cooper, A., Chase, M.R., Johannsen, E., Kieff, E., and Cahir-McFarland, E. (2006). RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc. Natl. Acad. Sci. USA 103, 1900-1905   DOI   PUBMED   ScienceOn
29 Grimm, T., Schneider, S., Naschberger, E., Huber, J., Guenzi, E., Kieser, A., Reitmeir, P., Schulz, T.F., Morris, C.A., and Sturzl, M. (2005). EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood 105, 3263-3269   DOI   PUBMED   ScienceOn
30 Johannsen, E., Miller, C.L., Grossman, S.R., and Kieff, E. (1996). EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J. Virol. 70, 4179-4183   PUBMED
31 Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., et al. (2006). Global variation in copy number in the human genome. Nature 444, 444-454   DOI   ScienceOn
32 Spender, L.C., Cornish, G.H., Sullivan, A., and Farrell, P.J. (2002). Expression of transcription factor AML-2 (RUNX3, CBFalpha-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J. Virol. 76, 4919-4927   DOI   PUBMED
33 Carter, K.L., Cahir-McFarland, E., and Kieff, E. (2002). Epstein-Barr virus-induced changes in B-lymphocyte gene expression. J. Virol. 76, 10427-10436   DOI   PUBMED
34 Henkel, T., Ling, P.D., Hayward, S.D., and Peterson M.G. (1994). Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa, Science 265, 92-95   DOI
35 Sylla, B.S., Hung, S.C., Davidson, D.M., Hatzivassiliou, E., Malinin, N.L., Wallach, D., Gilmore, T.D., Kieff, E., and Mosialos, G. (1998). Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-kappaB through a pathway that includes the NF-kappaB-inducing kinase and the IkappaB kinases IKKalpha and IKKbeta. Proc. Natl. Acad. Sci. USA 95, 10106-10111   DOI   ScienceOn
36 Johannsen, E., Koh, E., Mosialos, G., Tong, X., Kieff, E., and Grossman, S.R. (1995). Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69, 253-262   PUBMED
37 Kim, K.J., Lee, H.J., Park, M.H., Cha, S.H., Kim, K.S., Kim, H.T., Kimm, K., Oh, B., and Lee, J.Y. (2006). SNP identification, linkage disequilibrium, and haplotype analysis for a 200-kb genomic region in a Korean population. Genomics 88, 535-540   DOI   PUBMED   ScienceOn