Browse > Article

Functional Diversity of Cysteine Residues in Proteins and Unique Features of Catalytic Redox-active Cysteines in Thiol Oxidoreductases  

Fomenko, Dmitri E. (Department of Biochemistry and Redox Biology Center, University of Nebraska)
Marino, Stefano M. (Department of Biochemistry and Redox Biology Center, University of Nebraska)
Gladyshev, Vadim N. (Department of Biochemistry and Redox Biology Center, University of Nebraska)
Abstract
Thiol-dependent redox systems are involved in regulation of diverse biological processes, such as response to stress, signal transduction, and protein folding. The thiol-based redox control is provided by mechanistically similar, but structurally distinct families of enzymes known as thiol oxidoreductases. Many such enzymes have been characterized, but identities and functions of the entire sets of thiol oxidoreductases in organisms are not known. Extreme sequence and structural divergence makes identification of these proteins difficult. Thiol oxidoreductases contain a redox-active cysteine residue, or its functional analog selenocysteine, in their active sites. Here, we describe computational methods for in silico prediction of thiol oxidoreductases in nucleotide and protein sequence databases and identification of their redox-active cysteines. We discuss different functional categories of cysteine residues, describe methods for discrimination between catalytic and noncatalytic and between redox and non-redox cysteine residues and highlight unique properties of the redox-active cysteines based on evolutionary conservation, secondary and three-dimensional structures, and sporadic replacement of cysteines with catalytically superior selenocysteine residues.
Keywords
cysteine; redox; selenocysteine; thiol oxidoreductase; thioredoxin;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., and Toledano, M.B. (2003). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic. Biol. Med. 35, 889-900   DOI   ScienceOn
2 Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., and Milzani, A. (2007). S-glutathionylation in protein redox regulation. Free Radic. Biol. Med. 43, 883-898   DOI   ScienceOn
3 Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., and Rossi, R. (2008). Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 10, 445-473   DOI   ScienceOn
4 Fermani, S., Sparla, F., Falini, G., Martelli, P.L., Casadio, R., Pupillo, P., Ripamonti, A., and Trost, P. (2007). Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3- phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 104, 11109-11114
5 Fetrow, J.S., Godzik, A., and Skolnick, J. (1998). Functional analysis of the Escherichia coli genome using the sequence-to structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J. Mol. Biol. 282,703-711   DOI   ScienceOn
6 Fomenko, D.E., Xing, W., Adair, B.M., Thomas, D.J., and Gladyshev, V.N. (2007). High-Throughput Identification of Catalytic Redox- Active Cysteine Residues. Science 315, 387-389   DOI   ScienceOn
7 Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P.S., and Sigrist, C.J. (2008). The 20 years of PROSITE. Nucleic Acids Res. 36, D245-D249   DOI   ScienceOn
8 Jones, D.T., and Ward, J.J. (2003). Prediction of disordered regions in proteins from position specific score matrices. Proteins 53, 573-578   DOI   ScienceOn
9 Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439-1443   DOI   ScienceOn
10 Moutevelis, E., and Warwicker, J. (2004). Prediction of pKa and redox properties in the thioredoxin superfamily. Protein Sci. 13, 2744-2752   DOI   ScienceOn
11 Wood, M.J., Storz, G., and Tjandra, N. (2004). Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430, 917-921   DOI   ScienceOn
12 Ridge, P.G., Zhang, Y., and Gladyshev, V.N. (2008). Comparative genomic analyses of copper transporters and cupropro-teomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3, e1378   DOI   ScienceOn
13 Stadtman, T.C. (1996). Selenocysteine. Annu. Rev. Biochem. 65, 83-100   DOI   ScienceOn
14 Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., and Morgan, B.A. (2004). A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15, 129-139   DOI   ScienceOn
15 Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE. PE1
16 Beeby, M., O'Connor, B.D., Ryttersgaard, C., Boutz, D.R., Perry, L.J., and Yeates, T.O. (2005). The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3, e309   DOI   ScienceOn
17 Fomenko, D.E., and Gladyshev, V.N. (2003). Identity and functions of CxxC-derived motifs. Biochemistry 42, 11214-11225   DOI   ScienceOn
18 Greco, T.M., Hodara, R., Parastatidis, I., Heijnen, H.F., Dennehy, M.K., Liebler, D.C., and Ischiropoulos, H. (2006). Identification of S-nitrosylation motifs by site-specific mapping of the Snitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 103, 7420-7425
19 Sun, J., Steenbergen, C., and Murphy, E. (2006). S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 8, 1693-1705   DOI   ScienceOn
20 Zhang, Y., and Gladyshev, V.N. (2008a). Trends in selenium utilization in marine microbial world revealed through the analysis of the global ocean sampling (GOS) project. PLoS Genet. 4, e1000095   DOI   ScienceOn
21 Salmeen, A., Andersen, J.N., Myers, M.P., Meng T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769-773   DOI   ScienceOn
22 Tu, B.P., and Weissman, J.S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341-346   DOI   ScienceOn
23 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402   DOI
24 Kim, H.Y., and Gladyshev, V.N. (2005). Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine- R-sulfoxide reductases. PLoS Biol. 3, e375   DOI   ScienceOn
25 Kim, H.Y., Fomenko, D.E., Yoon, Y.E., and Gladyshev, V.N. (2006). Catalytic advantages provided by selenocysteine in methionine-Ssulfoxide reductases. Biochemistry 45, 13697-13704   DOI   ScienceOn
26 Fetrow, J.S., Siew, N., Di Gennaro, J.A., Martinez-Yamour, M., Dyson, H.J., and Skolnick, J. (2001). Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight? Protein Sci. 10, 1005-1014   DOI   ScienceOn
27 Fomenko, D.E., and Gladyshev, V.N. (2002). CxxS: fold-inependent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci. 11, 2285-2296   DOI   ScienceOn
28 Wessjohann, L.A., Schneider, A., Abbas, M., and Brandt, W. (2007). Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 388, 997-1006   DOI   ScienceOn
29 Cammer, S.A., Hoffman, B.T., Speir, J.A., Canady, M.A., Nelson, M.R., Knutson, S., Gallina, M., Baxter, S.M., and Fetrow, J.S. (2003). Structure-based active site profiles for genome analysis and functional family subclassification. J. Mol. Biol. 334, 387-401   DOI   ScienceOn
30 Zhang, Y., and Gladyshev, V.N. (2005). An algorithm for identifycation of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics 21, 2580-2589   DOI   ScienceOn
31 Zhang F.L., and Casey P.J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241-269   DOI   ScienceOn
32 Chivers, P.T., Laboissiere, M.C., and Raines, R.T. (1996). The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 15, 2659-2667
33 Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA 105, 7147-7152
34 von Mering, C., Jensen, L.J., Kuhn, M., Chaffron, S., Doerks, T., Kruger, B., Snel, B., and Bork, P. (2007). STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 35, D358-D362   DOI   ScienceOn
35 Andres-Mateos, E., Perier, C., Zhang, L., Blanchard-Fillion, B., Greco, T.M., Thomas, B., Ko, H.S., Sasaki, M., Ischiropoulos, H., Przedborski, S., et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA 104, 14807-14812
36 Iqbalsyah, T.M., Moutevelis, E., Warwicker, J., Errington, N., and Doig, A.J. (2006). The CXXC motif at the N terminus of an alpha-helical peptide. Protein Sci. 15, 1945-1950   DOI   ScienceOn
37 Wassef, R., Haenold, R., Hansel, A., Brot, N., Heinemann, S.H., and Hoshi, T. (2007). Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms. J. Neurosci. 27, 12808-12816   DOI   ScienceOn
38 Newman, S.F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W.M., Klein, J.B., Turner, D.M., and Butterfield, D.A. (2007). An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res. 85, 1506-1514   DOI   ScienceOn
39 Martin, J.L. (1995). Thioredoxin - fold for all reasons. Structure 3, 245-250   DOI   ScienceOn
40 Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrixes. J. Mol. Biol. 292, 195-202   DOI   ScienceOn
41 Castagnetto, J.M., Hennessy, S.W., Roberts, V.A., Getzoff, E.D., Tainer, J.A., and Pique, M.E. (2002). MDB: the metalloprotein database and browser at the scripps research institute. Nucleic Acids Res 30, 379-382   DOI   ScienceOn
42 Biswas, S., Chida, A.S., and Rahman, I. (2006). Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem. Pharmacol. 71, 551-564   DOI   ScienceOn
43 Collet, J.F., and Bardwell, J.C. (2002). Oxidative protein folding in bacteria. Mol. Microbiol. 44, 1-8   DOI   ScienceOn
44 Ilbert, M., Horst, J., Ahre16, S., Winter, J., Graf, P.C., Lilie, H., and Jakob, U. (2007). The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 14, 556-563   DOI   ScienceOn
45 Salsbury, FR. Jr., Knutson, S.T., Poole, L.B., and Fetrow, J.S. (2008). Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci. 17, 299-312   DOI   ScienceOn
46 Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J. and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471-481   DOI   ScienceOn
47 Pedone, E., Limauro, D., and Bartolucci, S. (2008). The machinery for oxidative protein folding in thermophiles. Antioxid Redox Signal. 10, 157-169   DOI   ScienceOn
48 Bock, A., Forchhammer, K., Heider, J., and Baron, C. (1991). Selenoprotein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 16, 463-467   DOI   ScienceOn
49 Mates, J.M., Segura, J.A., Alonso, F.J., and Márquez, J. (2008). Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch. Toxicol. 82, 273-299   DOI
50 Zhang, Y., and Gladyshev, V.N. (2008b). Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 379, 881-899   DOI   ScienceOn
51 Gattiker, A., Gasteiger, E., and Bairoch, A. (2002). ScanProsite: a reference implementation of a PROSITE scanning tool. Appl. Bioinform. 1, 107-108
52 Hook, D.W., and Harding, J.J. (1997). Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21- hemisuccinate, cyanate and other small molecules. Biochim. Biophys. Acta 1362, 232-242   DOI   ScienceOn
53 Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C. (2003). Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677-693   DOI   ScienceOn
54 Jacob, C., Giles, G.I., Giles, N.M., and Sies, H. (2003). Sulfur and selenium: The role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 42, 4742-4758   DOI   ScienceOn
55 Conway, M.E., Poole, L.B., and Hutson, S.M. (2004). Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme. Biochemistry 43, 7356-7364   DOI   ScienceOn
56 Jakob, U., Eser, M., and Bardwell, J.C. (2000). Redox switch of hsp33 has a novel zinc-binding motif. J. Biol. Chem. 275, 38302-38310   DOI   ScienceOn
57 Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653   DOI   ScienceOn
58 Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A.M., et al. (2006). Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid. Redox Signal. 8, 1975-1986   DOI   ScienceOn
59 Chivers, P.T., Prehoda, K.E., and Raines, R.T. (1997). The CXXC motif: a rheostat in the active site. Biochemistry 36, 4061-4066   DOI   ScienceOn
60 Gladyshev, V.N., Kryukov, G.V., Fomenko, D.E., and Hatfield, D.L. (2004). Identification of trace element-containing proteins in genomic databases. Annu. Rev. Nutr. 24, 579-596   DOI   ScienceOn
61 Sanchez, R., Riddle, M., Woo, J., and Momand, J. (2008). Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci. 17, 473-481   DOI   ScienceOn
62 Attwood, T.K., Bradley, P., Flower, D.R., Gaulton, A., Maudling, N., Mitchell, A.L., Moulton, G., Nordle, A., Paine, K., Taylor, P., et al. (2003). PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res. 31, 400-402   DOI   ScienceOn
63 Fetrow, J.S., and Skolnick, J. (1998). Method for prediction of protein function from sequence using the sequence-to-structure-tofunction paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J. Mol. Biol. 281, 949-968   DOI   ScienceOn
64 Hatfield, D.L., and Gladyshev, V.N. (2002). How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565-3576   DOI
65 Kortemme, T., and Creighton, T.E. (1995). Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pha values in proteins of the thioredoxin family. J. Mol. Biol 253, 799-812   DOI   ScienceOn