Browse > Article

Glial Fibrillary Acidic Protein Splice Variants in Hepatic Stellate Cells - Expression and Regulation  

Lim, Michelle Chin Chia (Institute of Bioengineering and Nanotechnology)
Maubach, Gunter (Institute of Bioengineering and Nanotechnology)
Zhuo, Lang (Institute of Bioengineering and Nanotechnology)
Abstract
The glial fibrillary acidic protein (GFAP) is traditionally used as a marker for astrocytes of the brain, and more recently for the hepatic stellate cells (HSCs) of the liver. Several GFAP splice variants have been previously reported in the astrocytes of the CNS and in the non-myelinating Schwann cells of the PNS. In this study, we investigate whether GFAP splice variants are present in the HSCs and their expression as a function of HSCs activation. Furthermore, the regulation of these transcripts upon treatment with interferon gamma ($IFN-{\gamma}$) will be explored. Using semi-quan-titative RT-PCR and real-time PCR, we examine the expression and regulation of GFAP splice variants in HSCs as well as their respective half-life. We discover that most of the GFAP splice variants ($GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$) found in the neural system are also expressed in quiescent and culture-activated primary HSCs. Interestingly, $GFAP{\alpha}$ is the predominant form in quiescent and culture-activated primary HSCs, while $GFAP{\beta}$, predominates in the SV40-immortalized activated HSC-T6. $GFAP{\delta}$, ${\varepsilon}$ and ${\kappa}$ have similar half-lives of 10 hours, while $GFAP{\beta}$ has a half-life of 17 hours. Treatment of HSC-T6 with $IFN-{\gamma}$ results in a significant 1.29-fold up-regulation of $GFAP{\alpha}$ whereas the level of the other transcripts remains unchanged. In summary, $GFAP{\alpha}$, ${\beta}$, ${\delta}$, ${\varepsilon}$ and $\kappa$ are present in HSCs. They are differentially regulated on the transcription level, implying a role of the 5' and 3' untranslated regions.
Keywords
Expression; GFAP Splice Variants; Hepatic Stellate Cells; $IFN-{\gamma}; $;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Apte, M.V., Haber, P.S., Applegate, T.L., Norton, I.D., McCaughan, G.W., Korsten, M.A., Pirola, R.C., and Wilson, J.S. (1998). Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 43, 128-133   DOI   ScienceOn
2 Baroni, G.S., D'Ambrosio, L., Curto, P., Casini, A., Mancini, R., Jezequel, A.M., and Benedetti, A. (1996). Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23, 1189-1199   DOI
3 Chiu, F.C., and Goldman, J.E. (1984). Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J. Neurochem. 42, 166-174   DOI
4 Condorelli, D.F., Nicoletti, V.G., Barresi, V., Conticello, S.G., Caruso, A., Tendi, E.A., and Giuffrida Stella, A.M. (1999a). Structural features of the rat GFAP gene and identification of a novel alternative transcript. J. Neurosci. Res. 56, 219-228   DOI   ScienceOn
5 Feinstein, D.L., Weinmaster, G.A., and Milner, R.J. (1992). Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J. Neurosci. Res. 32, 1-14   DOI   ScienceOn
6 Neubauer, K., Knittel, T., Aurisch, S., Fellmer, P., and Ramadori, G. (1996). Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J. Hepatol. 24, 719-730   DOI   ScienceOn
7 Niki, T., De Bleser, P.J., Xu, G., Van Den Berg, K., Wisse, E., and Geerts, A. (1996). Comparison of glial fibrillary acidic protein and desmin staining in normal and CCl4-induced fibrotic rat livers. Hepatology 23, 1538-1545   DOI
8 Ross, J. (1995). mRNA stability in mammalian cells. Microbiol. Rev. 59, 423-450
9 Sancho-Tello, M., Valles, S., Montoliu, C., Renau-Piqueras, J., and Guerri, C. (1995). Developmental pattern of GFAP and vimentin gene expression in rat brain and in radial glial cultures. Glia 15, 157-166   DOI   ScienceOn
10 Tiggelman, A.M., Boers, W., Linthorst, C., Sala, M., and Chamuleau, R.A. (1995). Collagen synthesis by human liver (myo)fibroblasts in culture: evidence for a regulatory role of IL-1 beta, IL-4, TGF beta and IFN gamma. J. Hepatol. 23, 307-317
11 Rockey, D.C., Maher, J.J., Jarnagin, W.R., Gabbiani, G., and Friedman, S.L. (1992). Inhibition of rat hepatic lipocyte activation in culture by interferon-gamma. Hepatology 16, 776-784   DOI
12 Galea, E., Dupouey, P., and Feinstein, D.L. (1995). Glial fibrillary acidic protein mRNA isotypes: expression in vitro and in vivo. J. Neurosci. Res. 41, 452-461   DOI   ScienceOn
13 Eng, L.F., Vanderhaeghen, J.J., Bignami, A., and Gerstl, B. (1971). An acidic protein isolated from fibrous astrocytes. Brain Res. 28, 351-354   DOI   ScienceOn
14 Gard, A.L., White, F.P., and Dutton, G.R. (1985). Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol. 8, 359-375   DOI   ScienceOn
15 Iredale, J.P. (2001). Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. 21, 427-436   DOI   ScienceOn
16 Buniatian, G., Gebhardt, R., Schrenk, D., and Hamprecht, B. (1996a). Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker. Eur. J. Cell. Biol. 70, 23-32
17 Mignone, F., Gissi, C., Liuni, S., and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol. 3, Review S0004
18 Nielsen, A.L., Holm, I.E., Johansen, M., Bonven, B., Jorgensen, P., and Jorgensen, A.L. (2002). A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J. Biol. Chem. 277, 29983-29991   DOI   ScienceOn
19 Riccalton-Banks, L., Bhandari, R., Fry, J., and Shakesheff, K.M. (2003). A simple method for the simultaneous isolation of stellate cells and hepatocytes from rat liver tissue. Mol. Cell. Biochem. 248, 97-102   DOI   ScienceOn
20 Buniatian, G., Traub, P., Albinus, M., Beckers, G., Buchmann, A., Gebhardt, R., and Osswald, H. (1998). The immunoreactivity of glial fibrillary acidic protein in mesangial cells and podocytes of the glomeruli of rat kidney in vivo and in culture. Biol. Cell 90, 53-61   DOI   ScienceOn
21 Bignami, A., Eng, L.F., Dahl, D., and Uyeda, C.T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429-435   DOI   ScienceOn
22 Gao, Y., and Sztul, E. (2001). A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J. Cell Biol. 152, 877-894   DOI
23 Reeves, S.A., Helman, L.J., Allison, A., and Israel, M.A. (1989). Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 86, 5178−5182
24 Condorelli, D.F., Nicoletti, V.G., Dell'Albani, P., Barresi, V., Caruso, A., Conticello, S.G., Belluardo, N., and Giuffrida Stella, A.M. (1999b). GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem. Res. 24, 709-714   DOI   ScienceOn
25 Regoli, M., Orazioli, D., Gerli, R., and Bertelli, E. (2000). Glial fibrillary acidic protein (GFAP)-like immunoreactivity in rat endocrine pancreas. J. Histochem. Cytochem. 48, 259-266   DOI   ScienceOn
26 Herrmann, H., and Aebi, U. (1998). Structure, assembly, and dynamics of intermediate filaments. Subcell. Biochem. 31, 319-362
27 Buniatian, G., Hamprecht, B., and Gebhardt, R. (1996b). Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast- like phenotypes. Biol. Cell 87, 65-73   DOI   ScienceOn
28 Fuchs, E., and Weber, K. (1994). Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345-382   DOI   ScienceOn
29 Blechingberg, J., Holm, I.E., Nielsen, K.B., Jensen, T.H., Jorgensen, A. L., and Nielsen, A.L. (2007). Identification and characterization of GFAPkappa, a novel glial fibrillary acidic protein isoform. Glia 55, 497-507   DOI   ScienceOn
30 Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D.C., Friedman, S.L., and Blaner, W.S. (2000). An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J. Lipid Res. 41, 882-893
31 Zelenika, D., Grima, B., Brenner, M., and Pessac, B. (1995). A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res. Mol. Brain Res. 30, 251-258   DOI   ScienceOn
32 Nielsen, A.L., and Jorgensen, A.L. (2004). Self-assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform-specific C terminus. J. Biol. Chem. 279, 41537- 41545   DOI   ScienceOn
33 Bermano, G., Shepherd, R.K., Zehner, Z.E., and Hesketh, J.E. (2001). Perinuclear mRNA localisation by vimentin 3′- untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett. 497, 77-81   DOI   ScienceOn
34 Roelofs, R.F., Fischer, D.F., Houtman, S.H., Sluijs, J.A., Van Haren, W., Van Leeuwen, F.W., and Hol, E.M. (2005). Adult human subventricular, subgranular, and subpial zones contain astrocytes with a specialized intermediate filament cytoskeleton. Glia 52, 289-300   DOI   ScienceOn