Browse > Article

Expressed Sequence Tag Analysis of Antarctic Hairgrass Deschampsia antarctica from King George Island, Antarctica  

Lee, Hyoungseok (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Cho, Hyun Hee (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Kim, Il-Chan (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Yim, Joung Han (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Lee, Hong Kum (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Lee, Yoo Kyung (Polar BioCenter, Korea Polar Research Institute (KOPRI), Korea Ocean Research and Development Institute (KORDI))
Abstract
Deschampsia antarctica is the only monocot that thrives in the tough conditions of the Antarctic region. It is an invaluable resource for the identification of genes associated with tolerance to various environmental pressures. In order to identify genes that are differentially regulated between greenhouse-grown and Antarctic field-grown plants, we initiated a detailed gene expression analysis. Antarctic plants were collected and greenhouse plants served as controls. Two different cDNA libraries were constructed with these plants. A total of 2,112 cDNA clones was sequenced and grouped into 1,199 unigene clusters consisting of 243 consensus and 956 singleton sequences. Using similarity searches against several public databases, we constructed a functional classification of the ESTs into categories such as genes related to responses to stimuli, as well as photosynthesis and metabolism. Real-time PCR analysis of various stress responsive genes revealed different patterns of regulation in the different environments, suggesting that these genes are involved in responses to specific environmental factors.
Keywords
Abiotic Stress; Antarctic; Deschampsia antarcitca; Expressed Sequence Tags (ESTs); King George Island; Quantitative Real Time Reverse Transcription PCR (qRT-PCR);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Alden, J., and Hermann, R.K. (1971). Aspects of cold-hardiness mechanism in plants. Bot. Rev. 37, 137-142
2 Brautigam, M., Lindlof, A., Zakhrabekova, S., Gharti-Chhetri, G., Olsson, B., and Olsson, O. (2005). Generation and analysis of 9792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biol. 1, 18
3 Pelham, H.R. (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959-961   DOI   ScienceOn
4 Perez-Torres, E., Bravo, L.A., Corcuera, L.J., and Johnson, G.N. (2007). Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol. Plant. 130, 185-194   DOI   ScienceOn
5 Swindell, W.R., Huebner, M., and Weber, A.P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8, 125   DOI
6 van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162   DOI   ScienceOn
7 Yu, J.H., Kim, K.P., Park, S.M., and Hong, C.B. (2005). Biochemical analysis of a cytosolic small heat shock protein, NtHSP18.3, from Nicotiana tabacum. Mol. Cells 19, 328-333
8 Danyluk, J., and Sarhan, F. (1996). Identification and characterization of a low temperature-regulated gene encoding a hydrophobic protein from wheat. Montreal, Canada: Universite de Quebec a Montreal, Sciences Biologiques
9 Gielwanowska, I., Szczuka, E., Bednara, J., and Gorecki, R. (2005). Anatomical features and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Ann. Bot. 96, 1109-1119   DOI   ScienceOn
10 Hong, J.K, Lee, S.C., and Hwang, B.K. (2005). Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene 356, 169-180   DOI   ScienceOn
11 Robinson, N.J., Tommey, A.M., Kuske, C., and Jackson, P.J. (1993). Plant metallothioneins. Biochem. J. 295, 1-10   DOI
12 Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., and Lipman, D. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410   DOI
13 Schroeter, B., Olech, M., Kappen, L., and Heitland, W. (1995). Ecophysiological investigations of Usnea antarctica in the Maritime Antarctic I. Annual microclimatic conditions and potential primary production. Antarct. Sci. 7, 251-260
14 Sharma, Y.K., and Davis, K.R. (1995). Isolation of a novel Arabidopsis ozone-induced cDNA by differential display. Plant Mol. Biol. 29, 91-98   DOI
15 Sakamoto, H., Araki, T., Meshi, T., and Iwabuchi, M. (2000). Expression of a subset of the Arabidopsis $Cys_2/His_2$-type zinc-finger protein gene family under water stress. Gene 248, 23-32   DOI   ScienceOn
16 Li, Q.B., Haskell, D.W., and Guy, C.L. (1999). Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol. Biol. 39, 21-34   DOI   ScienceOn
17 van Loon, L.C., and van Strien, E.A. (1999). The families of pathogenesisrelated proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55. 85-97   DOI   ScienceOn
18 Green, R., and Fluhr, R. (1995). UV-B-Induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7, 203-212   DOI   ScienceOn
19 Schmitt, A.O., Specht, T., Beckmann, G., Dahl, E., Pilarsky, C.P., Hinzmann, B., and Rosenthal, A. (1999). Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucleic Acids Res. 27, 4251-4260   DOI   ScienceOn
20 Danyluk, J., Houde, M., and Sarhan, F. (1994). Differential expression of a gene encoding an acidic dehydrin in chillingsensitive and freezing-tolerant Gramineae species. FEBS Lett. 344, 20-24   DOI   ScienceOn
21 Snowden, K.C., and Gardner, R.C. (1993). Five genes induced by aluminium in wheat (Triticum aestivum L.) roots. Plant Physiol. 103, 855-861   DOI   ScienceOn
22 Alberdi, M., Bravo, L.A., Guitierrez, A.H., Gidekel, M., and Corcuera, L.J. (2002). Ecophysiology of antarctic vascular plants. Physiol. Planta 115, 479-486   DOI   ScienceOn
23 Annibaldi, A., Truzzi, C., Illuminati, S., Bassotti, E., and Scarponi, G. (2007). Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land). Anal. Bioanal. Chem. 387, 977-998   DOI
24 Bravo, L.A., Ulloa, N., Zuniga, G.E., Casanova, A., Corcuera, L.J., and Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. hysiol. Planta. 111, 55-65   DOI   ScienceOn
25 Edwards, J.A., and Lewis-Smith, R.I. (1988). Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarc. Surv. Bull. 81, 43-63
26 Hall, J.L. (2002). Cellular mechanism for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1-11   DOI   ScienceOn
27 Dhanaraj, A.L., Slovin, J.P., and Rowland, L.J. (2004). Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci. 166, 863-872   DOI   ScienceOn
28 Ramalingam, J., Pathan, M.S., Feril, O., Miftahudin, Ross K., Ma, X.-F., Mahmoud, A.A., Layton, J., Rodriguez-Milla, M.A., Chikmawati, T., Valliyodan, B., et al. (2006). Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49, 1324-1340   DOI
29 Wang, Y., Chu, Y., Liu, G., Wang, M.H., Jiang, J., Hou, Y., Qu, G., and Yang, C. (2007). Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. J. Plant Physiol. 164, 78-89   DOI   ScienceOn
30 Lee, H., Hur, C.G., Oh, C.J., Kim, H.B., Park, S.Y., and An, C.S. (2004). Analysis of the root nodule-enhanced transcriptome in soybean. Mol. Cells 18, 53-62
31 Bravo, L.A., and Griffith, M. (2005). Characterization of antifreeze activity in Antarctic plants. J. Exp. Bot. 56, 1189-1196   DOI   ScienceOn
32 Gidekel, M., Destefano-Beltran, L., Garcia, P., Mujica, L., Leal, P., Cuba, M., Bravo, L.A., Corcuera, L.J., and Alberdi, M. (2003). Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles 7, 459-469   DOI
33 Zuniga, G.E., Alberdi, M., Fernandez, J., Montiel, P., and Corcuera, L.J. (1994). Lipid content in leaves of Deschampsia antarctica from the maritime Antarctic. Phytochemistry 37, 669-672   DOI   ScienceOn
34 Bhalerao, R., Keskitalo, J., Sterky, F., Erlandsson, R., Bjorkbacka, H., Birve, S.J., Karlsson, J., Gardestrom, P., Gustafsson, P., and Lundeberg, J. (2003). Gene expression in autumn leaves. Plant Physiol. 131, 430-442   DOI   ScienceOn
35 Gana, J.A., Sutton, F., and Kenefick, D.G. (1997). cDNA structure and expression patterns of a low-temperature-specific wheat gene tacr7. Plant Mol. Biol. 34, 643-650   DOI   ScienceOn