Bone Marrow-derived Side Population Cells are Capable of Functional Cardiomyogenic Differentiation |
Yoon, Jihyun
(Department of Cardiology, College of Medicine, Korea University)
Choi, Seung-Cheol (Department of Cardiology, College of Medicine, Korea University) Park, Chi-Yeon (Department of Cardiology, College of Medicine, Korea University) Choi, Ji-Hyun (Department of Cardiology, College of Medicine, Korea University) Kim, Yang-In (Department of Physiology and Neuroscience Research Institute, College of Medicine, Korea University) Shim, Wan-Joo (Department of Cardiology, College of Medicine, Korea University) Lim, Do-Sun (Department of Cardiology, College of Medicine, Korea University) |
1 | Asakura, A., and Rudnicki, M.A. (2002). Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339-1345 DOI ScienceOn |
2 | Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L., and Robbins, R.C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668-673 DOI ScienceOn |
3 | Naylor, C.S., Jaworska, E., Branson, K., Embleton, M.J., and Chopra, R. (2005). Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant. 35, 353-360 DOI ScienceOn |
4 | Ojima, K., Uezumi, A., Miyoshi, H., Masuda, S., Morita, Y., Fukase, A., Hattori, A., Nakauchi, H., Miyagoe-Suzuki, Y., and Takeda, S. (2004). Mac-1(low) early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration. Biochem. Biophys. Res. Commun. 321, 1050-1061 DOI ScienceOn |
5 | Wurmser, A.E., Nakashima, K., Summers, R.G., Toni, N., D'Amour, K.A., Lie, D.C., and Gage, F.H. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350-356 DOI ScienceOn |
6 | Sanchez-Ramos, J.R. (2002). Neural cells derived from adult bone marrow and umbilical cord blood. J. Neurosci. Res. 69, 880-893 DOI ScienceOn |
7 | Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., Wyderka, R., Ochala, A., and Ratajczak, M.Z. (2004). Mobilization of CD34/, CD34/, c- stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110, 3213-3220 DOI ScienceOn |
8 | Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797-1806 DOI ScienceOn |
9 | Iijima, Y., Nagai, T., Mizukami, M., Matsuura, K., Ogura, T., Wada, H., Toko, H., Akazawa, H., Takano, H., Nakaya, H., et al. (2003). Beating is necessary for transdifferentiation of skeletal muscle-derived cells into cardiomyocytes. FASEB J. 17, 1361-1363 DOI |
10 | Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., Colucci, W.S., and Liao, R. (2005). but Not cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ. Res. 97, 52-61 DOI ScienceOn |
11 | Labarge, M.A., and Blau, H.M. (2002). Biological progression from adult bone marrow to mononucleate stem cells to multinucleate muscle fiber in response to injury. Cell 111, 589-601 DOI ScienceOn |
12 | Kucia, M., Reca, R., Jala, V.R., Dawn, B., Ratajczak, J., and Ratajczak, M.Z. (2005). Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19, 1118-1127 DOI ScienceOn |
13 | Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K., Murase, N., Boggs, S.S., Greenberger, J.S., and Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science 284, 1168-1170 DOI ScienceOn |
14 | Watt, F.M., and Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427-1430 DOI ScienceOn |
15 | Lagostena, L., Avitabile, D., De Falco, E., Orlandi, A., Grassi, F., Iachininoto, M.G., Ragone, G., Fucile, S., Pompilio, G., Eusebi, F., et al. (2005). Electrophysiological properties of mouse bone marrow c- cells co-cultured onto neonatal cardiac myocytes. Cardiovasc. Res. 66, 482-492 DOI ScienceOn |
16 | Yoon, J., Shim, W.J., Ro, Y.M., and Lim, D.S. (2005). Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann. Hematol. 84, 715-721 DOI |
17 | Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., et al. (2005). Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96, 127-137 DOI ScienceOn |
18 | Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., Reth, M., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647-653 DOI ScienceOn |
19 | Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hartley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K., and Goodell, M.A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395-1402 DOI ScienceOn |
20 | Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., Ratajczak, J., Rezzoug, F., Ildstad, S.T., Bolli, R., et al. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. 95, 1191-1199 DOI ScienceOn |
21 | Lee, V.M., and Stoffel, M. (2003). Bone marrow: an extrapancreatic hideout for the elusive pancreatic stem cells? J. Clin. Invest. 111, 799-801 DOI |
22 | Storms, R.W., Goodell, M.A., Fisher, A., Mulligan, R.C., and Smith, C. (2000). Hoechst dye efflux reveals a novel CD7(+)CD34(-) lymphoid progenitor in human umbilical cord blood. Blood 96, 2125-2133 |
23 | Montanaro, F., Liadaki, K., Schienda, J., Flint, A., Gussoni, E., and Kunkel, L.M. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Exp. Cell Res. 298, 144-154 DOI ScienceOn |
24 | Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.H., Poppa, V., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664-668 DOI ScienceOn |
25 | Parmar, K., Sauk-Schubert, C., Burdick, D., Handley, M., and Mauch, P. (2003). Sca+CD34- murine side population cells are highly enriched for primitive stem cells. Exp. Hematol. 31, 244-250 DOI ScienceOn |
26 | Yao, A., Su, Z., Nonaka, A., Zubair, I., Spitzer, K.W., Bridge, J.H., Muelheims, G., Ross, J.Jr., and Barry, W.H. (1998). Abnormal myocyte homeostasis in rabbits with pacing induced heart failure. Am. J. Physiol. 275, H1441-H1448 |
27 | Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D.M., Nakano, Y., Meyer, E.M., Morel, L., Petersen, B.E., and Scott, E.W. (2002). Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542-545 DOI ScienceOn |
28 | Fraser, A.R., Cook, G., Franklin, I.M., Templeton, J.G., Campbell, M., Holyoake, T.L., and Campbell, J.D. (2006). Immature monocytes from G-CSF-mobilized peripheral blood stem cell collections carry surface-bound IL-10 and have the potential to modulate alloreactivity. J. Leukoc. Biol. 80, 862-869 DOI ScienceOn |
29 | Goodell, M.A., Rosenzweig, M., Kim, H., Marks, D.F., De- Maria, M., Paradis, G., Grupp, S.A., Sieff, C.A., Mulligan, R.C., and Johnson, R.P. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 3, 1337-1345 DOI ScienceOn |
30 | Sales-Pardo, I., Avendano, A., Martinez-Munoz, V., Garcia-Escarp, M., Celis, R., Whittle, P., Barquinero, J., Domingo, J.C., Marin, P., and Petriz, J. (2006). Flow cytometry of the side population: tips & tricks. Cell Oncol. 28, 37-53 |
31 | Nygren, J.M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B.K., and Jacobsen, S.E. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494-501 DOI ScienceOn |