Browse > Article

Expression of Kir2.1 Channels in Astrocytes Under Pathophysiological Conditions  

Kang, Shin Jung (Department of Molecular Biology, Sejong University)
Cho, Sang-hee (Department of Neurology, Pohang e-Hospital, Dong-sin Medical Corporation)
Park, Kyungjoon (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University)
Yi, Jihyun (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University)
Yoo, Soon Ji (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University)
Shin, Ki Soon (Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyunghee University)
Abstract
Astrocyte ion channels participate in ionic homeostasis in the brain. Inward rectifying potassium channels (Kir channels) in astrocytes have been particularly implicated in $K^+$ homeostasis because of their high open probability at resting potential and their increased conductance at high concentrations of extracellular $K^+$. We examined the expression of the Kir2.1 subunit, one of the Kir channel subunits, in the mouse brain by immunohistochemistry. Kir2.1 channels were widely distributed throughout the brain, with high expression in the olfactory bulb and the cerebellum. Interestingly, they were abundantly expressed in astrocytes of the olfactory bulb, while astrocytes in other brain regions including the hippocampus did not show any detectable expression. However, Kir2.1 channel-expressing cells were dramatically increased in the hippocampus by kainic acid-induced seizure and the cells were glial fibrillary acidic protein (GFAP)-positive, which confirms that astrocytes in the hippocampus express Kir2.1 channels under pathological conditions. Our results imply that Kir2.1 channels in astrocyte may be involved in buffering $K^+$ against accumulated extracellular $K^+$ caused by neuronal hyperexcitability under phathophysiological conditions.
Keywords
Astrocytes; Hippocampus; $K^+$ Homeostasis; Kainic Acid-induced Seizures; Kir2.1; Olfactory Bulb;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bordey, A. and Sontheimer, H. (1998). Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res. 32, 286-303   DOI   ScienceOn
2 Butt, A.M. and Kalsi, A. (2006). Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J. Cell. Mol. Med. 10, 33-44   DOI   ScienceOn
3 Chao, T.I., Kasa, P., and Wolff, J.R. (1997). Distribution of astroglia in glomeruli of the rat main olfactory bulb: exclusion from the sensory subcompartment of neuropil. J. Comp. Neurol. 388, 191-210   DOI   ScienceOn
4 D'Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. (1999). Impaired $K^{+}$ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J. Neurosci. 19, 8152-8162
5 De Saint Jan, D. and Westbrook, G.L. (2005). Detecting activity in olfactory bulb glomeruli with astrocyte recording. J. Neurosci. 25, 2917-2924   DOI   ScienceOn
6 Fisher, R.S., Pedley, T.A., Moody, W.J., and Prince, D.A. (1976). The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76-83   DOI   ScienceOn
7 Franklin, K.B.J. and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates (California: Academic Press,)
8 Gabriel, S., Kivi, A., Eilers, A., Kovacs, R., and Heinemann, U. (1998b). Effects of barium on stimulus-induced rises in $\left[K^{+}\right]_{o}$ in juvenile rat hippocampal area CA1. NeuroReport 9, 2583-2587   DOI   ScienceOn
9 Higashi, K., Fujita, A., Inanobe, A., Tanemoto, M., Doi, K., Kubo, T., and Kurachi, Y. (2001). An inwardly rectifying ($K^{+}$) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922-C931
10 Jansen, L.A., Uhlmann, E.J., Crino, P.B., Gutmann, D.H., and Wong, M. (2005). Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46, 1871-1880   DOI   ScienceOn
11 Neusch, C., Weishaupt, J.H., and Bahr, M. (2003). Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res. 311, 131-138
12 Park, C., Sohn, Y., Shin, K.S., Kim, J., Ahn, H., and Huhx, Y. (2003). The chronic inhibition of nitric oxide synthase enhances cell proliferation in the adult rat hippocampus. Neurosci. Lett. 339, 9-12   DOI   ScienceOn
13 Ransom, C.B. and Sontheimer, H. (1995). Biophysical and pharmacological characterization of inwardly rectifying $K^{+}$ currents in rat spinal cord astrocytes, J. Neurophysiol. 73, 333-346
14 Sperk, G., Lassmann, H., Baran, H., Kish, S.J., Seitelberger, F., and Hornykiewicz, O. (1983). Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience 10, 1301-1315   DOI   ScienceOn
15 Thomzig, A., Wenzel, M., Karschin, C., Eaton, M.J., Skatchkov, S.N., Karschin, A., and Veh, R.W. (2001). Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol. Cell. Neurosci. 18, 671-690   DOI   ScienceOn
16 Gabriel, S., Eilers, A., Kivi, A., Kovacs, R., Schulze, K., Lehmann, T.N., and Heinemann, U. (1998a). Effects of barium on stimulus induced changes in exptracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats. Neurosci. Lett. 242, 9-12   DOI   ScienceOn
17 Kofuji, P. and Newman, E.A. (2004). Potassium buffering in the central nervous system. Neuroscience 129, 1045-1056
18 Buck, L.B. (2000). The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611-618   DOI   ScienceOn
19 Kimelberg, H.K. and Norenberg, M.D. (1989). Astrocytes Sci. Am. 260, 66-72
20 Schousboe, A., Sarup, A., Bak, L.K., Waagepetersen, H.S., and Larsson, O.M. (2004). Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission. Neurochem. Int. 45, 521-527   DOI   ScienceOn
21 Zhang, X., Gelowitz, D.L., Lai, C.T., Boulton, A.A., and Yu, P.H. (1997). Gradation of kainic acid-induced rat limbic seizures and expression of hippocampal heat shock protein-70. Eur. J. Neurosci. 9, 760-769   DOI   ScienceOn
22 Stonehouse, A.H., Pringle, J.H., Norman, R.I., Stanfield, P.R., Conley, E.C., and Brammar, W.J. (1999). Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell Biol. 112, 457-465   DOI   ScienceOn
23 Kuffler, S.W. and Nicholls, J.G. (1966). The physiology of neuroglial cells. Ergeb. Physiol. 57, 1-90   DOI
24 Newman, E. and Reichenbach, A. (1996). The Muller cell: a functional element of the retina. Trends Neurosci. 19, 307-312   DOI   ScienceOn
25 Kimelberg, H.K. and Katz, D.M. (1985). High-affinity uptake of serotonin into immunocytochemically identified astrocytes. Science 228, 889-891   DOI
26 Hull, M., Müksch, B., Akundi, R.S., Waschbisch, A., Hoozemans, J.J., Veerhuis, R., and Fiebich, B.L. (2006). Amyloid beta peptide (25-35) activates protein kinase C leading to cyclooxygenase-2 induction and prostaglandin E2 release in primary midbrain astrocytes. Neurochem. Int. 48, 663-672   DOI
27 Newman, E.A. (1986). High potassium conductance in astrocyte endfeet. Science 233, 453-454   DOI
28 Hille, B. (2001). Ionic Channels in Excitable Membranes (Massachusetts: Sinauer Associates, INC)
29 Janigro, D., Gasparini, S., D'Ambrosio, R., McKhann, G. II., and DiFrancesco, D. (1997). Reduction of $K^{+}$ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J. Neurosci. 17, 2813-2124
30 Bailey, M.S. and Shipley, M.T. (1993). Astrocyte subtypes in the rat olfactory bulb: morphological heterogeneity and differential laminar distribution. J. Comp. Neurol. 328, 501-526   DOI   ScienceOn
31 Traynelis, S.F. and Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59, 259-276
32 Schauwecker, P.E. and Steward, O. (1997). Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc. Natl. Acad. Sci. USA 94, 4103-4108
33 Nichols, C.G. and Loptain, A.N. (1997). Inward rectifier potassium channels. Ann. Rev. Physiol. 59, 171-191   DOI   ScienceOn
34 Jabs, R., Paterson, I.A., and Walz, W. (1997). Qualitative analysis of membrane currents in glial cells from normal and gliotic tissue in situ: down-regulation of $Na^{+}$ current and lack of P2 purinergic responses. Neuroscience 81, 847-860   DOI   ScienceOn
35 Schroder, W., Seifert, G., Huttmann, K., Hinterkeuser, S., and Steinhauser, C. (2002). AMPA receptor-mediated modulation of inward rectifier $K^{+}$ channels in astrocytes of mouse hippocampus. Mol. Cell. Neurosci. 19, 447-458   DOI   ScienceOn
36 Nadler, J.V. and Cuthbertson, G.J. (1980). Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways. Brain Res. 195, 47-56   DOI   ScienceOn
37 Newman, E.A. (1984). Regional specialization of retinal glial cell membrane. Nature 309, 155-157   DOI   ScienceOn
38 Ben-Ari, Y. (1985). Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375-403   DOI   ScienceOn
39 Hinterkeuser, S., Schröder, W., Hager, G., Seifert, G., Blümcke, I., Elger, C.E., Schramm, J., and Steinhäuser, C. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductance. Eur. J. Neurosci. 12, 2087-2096   DOI   ScienceOn
40 Nadler, J.V. (1981). Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 29, 2031-2042   DOI
41 Fontana. A., Fierz. W., and Wekerle, H. (1984). Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307, 273-276   DOI
42 Alarcon, R., Fuenzalida, C., Santibanez, M., and von Bernhardi, R. (2005). Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J. Biol. Chem. 280, 30406-30415   DOI   ScienceOn
43 Binami, A. (1995). Neuron-Glia Interrelations during Phylogeny. I. Phylogeny and Ontogeny of Glial Cells (New Jersey: Humana)
44 Constantinescu, C.S., Tani, M., Ransohoff, R.M., Wysocka, M., Hilliard, B., Fujioka, T., Murphy, S., Tighe, P.J., Sarma, J.D., Trinchieri, G., and Rostami, A. (2005). Astrocytes as antigenpresenting cells: expression of IL-12/IL-23. J. Neurochem. 95, 331-340   DOI   ScienceOn