Browse > Article

Jab1 as a Mediator of Nuclear Export and Cytoplasmic Degradation of p53  

Lee, Eun-Woo (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University)
Oh, Wonkyung (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University)
Song, Jaewhan (Department of Food Science and Biotechnology, Faculty of Life Science and Technology, Sungkyunkwan University)
Abstract
Jun activation domain-binding protein 1 (Jab1) is involved in various cellular mechanisms including development in Drosophila and mouse, cell cycle control and signal transduction pathways. Recent studies also determined that Jab1 functions as a nuclear exporter and inducer of cytoplasmic degradation for several proteins including p53, p27, capsid of West Nile virus, and Smad4/7 proteins. In particular, p53 is shown to bind to and to be exported into the cytoplasm by Jab1, which helps to maintain low levels of p53 under normal conditions. This review was undertaken in an effort to understand the biological significance of the homeostasis of p53 as maintained in the presence of Jab1. Based on our observations, we have provided potential mechanistic hypotheses for the nuclear export of p53 in coordination with Jab1 and the role of other factors in these processes.
Keywords
CNS; Jab1; JAMM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 18  (Related Records In Web of Science)
연도 인용수 순위
1 Bae, M. K., Ahn, M. Y., Jeong, J. W., Bae, M. H., Lee, Y. M., et al. (2002) Jab1 interacts directly with HIF-1alpha and regulates its stability. J. Biol. Chem. 277, 9−12   DOI   ScienceOn
2 Claret, F. X., Hibi, M., Dhut, S., Toda, T., and Karin, M. (1996) A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 383, 453−457   DOI
3 Cope, G. A. and Deshaies, R. J. (2006) Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem. 7, 1   DOI   ScienceOn
4 Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323−331
5 Levinson, H., Sil, A. K., Conwell, J. E., Hopper, J. E., and Ehrlich, H. P. (2004) Alpha V integrin prolongs collagenase production through Jun activation binding protein 1. Ann. Plast. Surg. 53, 155−161   DOI   ScienceOn
6 Louria-Hayon, I., Grossman, T., Sionov, R. V., Alsheich, O., Pandolfi, P. P., et al. (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J. Biol. Chem. 278, 33134−33141   DOI   ScienceOn
7 O'Brate, A. and Giannakakou, P. (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist. Updat. 6, 313−322   DOI   ScienceOn
8 Oh, W., Lee, E. W., Sung, Y. H., Yang, M. R., Ghim, J., et al. (2006a) Jab1 induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2. J. Biol. Chem. 281, 17457−17465   DOI   ScienceOn
9 Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., et al. (2001) Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104−3117   DOI   ScienceOn
10 Sherr, C. J. and Weber, J. D. (2000) The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94−99
11 Wang, Y., Lu, C., Wei, H., Wang, N., Chen, X., et al. (2004a) Hepatopoietin interacts directly with COP9 signalosome and regulates AP-1 activity. FEBS Lett. 572, 85−91   DOI
12 Wei, N., Chamovitz, D. A., and Deng, X. W. (1994) Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117−124
13 Vousden, K. H. and Lu, X. (2002) Live or let die: the cell's response to p53. Nat. Rev. Cancer 2, 594−604
14 Ambroggio, X. I., Rees, D. C., and Deshaies, R. J. (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2, E2   DOI
15 Doronkin, S., Djagaeva, I., and Beckendorf, S. K. (2003) The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev. Cell 4, 699−710   DOI   ScienceOn
16 Tanaka, Y., Kanai, F., Ichimura, T., Tateishi, K., Asaoka, Y., et al. (2006) The hepatitis B virus X protein enhances AP-1 activation through interaction with Jab1. Oncogene 25, 633−642
17 Bode, A. M. and Dong, Z. (2004) Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 4, 793−805   DOI   ScienceOn
18 Gronroos, E., Terentiev, A. A., Punga, T., and Ericsson, J. (2004) YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc. Natl. Acad. Sci. USA 101, 12165−12170
19 Wei, N. and Deng, X. W. (1999) Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet. 15, 98−103
20 Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R., et al. (2003) Mono-versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972−1975   DOI
21 Bianchi, E., Denti, S., Granata, A., Bossi, G., Geginat, J., et al. (2000) Integrin LFA-1 interacts with the transcriptional coactivator JAB1 to modulate AP-1 activity. Nature 404, 617− 621   DOI   ScienceOn
22 Boyd, S. D., Tsai, K. Y., and Jacks, T. (2000) An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell. Biol. 2, 563−568   DOI   ScienceOn
23 Wang, Z. Q., Wei, H. D., and He, F. C. (2004b) Protein product encoded by a human novel gene E9730 enhances AP-1 activity through interacting with Jab1. Acta Biochim. Biophys. Sin (Shanghai) 36, 11−15   DOI   ScienceOn
24 Kleemann, R., Hausser, A., Geiger, G., Mischke, R., Burger- Kentischer, A., et al. (2000) Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 408, 211−216   DOI   ScienceOn
25 Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., and Bar- Sagi, D. (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell. Biol. 1, 20−26   DOI   ScienceOn
26 Geyer, R. K., Yu, Z. K., and Maki, C. G. (2000) The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat. Cell. Biol. 2, 569−573   DOI   ScienceOn
27 Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., 3rd, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611−615
28 Dornan, D., Wertz, I., Shimizu, H., Arnott, D., Frantz, G. D., et al. (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86−92   DOI   ScienceOn
29 Kim, B. C., Lee, H. J., Park, S. H., Lee, S. R., Karpova, T. S., et al. (2004) Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol. 24, 2251−2262   DOI   ScienceOn
30 Freedman, D. A. and Levine, A. J. (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288−7293
31 Callige, M., Kieffer, I., and Richard-Foy, H. (2005) CSN5/Jab1 is involved in ligand-dependent degradation of estrogen receptor {alpha} by the proteasome. Mol. Cell. Biol. 25, 4349− 4358   DOI   ScienceOn
32 Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., et al. (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660−1672   DOI   ScienceOn
33 Chauchereau, A., Georgiakaki, M., Perrin-Wolff, M., Milgrom, E., and Loosfelt, H. (2000) JAB1 interacts with both the progesterone receptor and SRC-1. J Biol Chem, 275, 8540−8548   DOI   ScienceOn
34 Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997) Mdm2 promotes the rapid degradation of p53. Nature 387, 296−299
35 Lu, C., Li, Y., Zhao, Y., Xing, G., Tang, F., et al. (2002) Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway. FASEB J. 16, 90−92
36 Leng, R. P., Lin, Y., Ma, W., Wu, H., Lemmers, B., et al. (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779−791   DOI   ScienceOn
37 Tomoda, K., Yoneda-Kato, N., Fukumoto, A., Yamanaka, S., and Kato, J. Y. (2004) Multiple functions of Jab1 are required for early embryonic development and growth potential in mice. J. Biol. Chem. 279, 43013−43018   DOI   ScienceOn
38 Grossman, S. R., Deato, M. E., Brignone, C., Chan, H. M., Kung, A. L., et al. (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342−344   DOI
39 Bech-Otschir, D., Kraft, R., Huang, X., Henklein, P., Kapelari, B., et al. (2001) COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 20, 1630−1639   DOI   ScienceOn
40 Brooks, C. L., Li, M., and Gu, W. (2004) Monoubiquitination: the signal for p53 nuclear export? Cell Cycle 3, 436−438
41 Shvarts, A., Steegenga, W. T., Riteco, N., van Laar, T., Dekker, P., et al. (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J. 15, 5349− 5357
42 Chamovitz, D. A., Wei, N., Osterlund, M. T., von Arnim, A. G., Staub, J. M., et al. (1996) The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86, 115−121
43 Li, S., Liu, X., and Ascoli, M. (2000) p38JAB1 binds to the intracellular precursor of the lutropin/choriogonadotropin receptor and promotes its degradation. J. Biol. Chem. 275, 13386−13393
44 Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., et al. (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382−1385   DOI
45 Wan, M., Cao, X., Wu, Y., Bai, S., Wu, L., et al. (2002) Jab1 antagonizes TGF-beta signaling by inducing Smad4 degradation. EMBO Rep. 3, 171−176   DOI   ScienceOn
46 Woods, D. B. and Vousden, K. H. (2001) Regulation of p53 function. Exp. Cell. Res. 264, 56−66
47 Yang, X., Menon, S., Lykke-Andersen, K., Tsuge, T., Di, X., et al. (2002) The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr. Biol. 12, 667−672   DOI   ScienceOn
48 Tomoda, K., Kubota, Y., and Kato, J. (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398, 160−165   DOI
49 Bernardi, R., Scaglioni, P. P., Bergmann, S., Horn, H. F., Vousden, K. H., et al. (2004) PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat. Cell. Biol. 6, 665− 672   DOI   ScienceOn
50 Shirangi, T. R., Zaika, A., and Moll, U. M. (2002) Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J. 16, 420−422
51 Yu, Z. K., Geyer, R. K., and Maki, C. G. (2000) MDM2-dependent ubiquitination of nuclear and cytoplasmic P53. Oncogene 19, 5892−5897   DOI   ScienceOn
52 Yang, Y., Li, C. C., and Weissman, A. M. (2004) Regulating the p53 system through ubiquitination. Oncogene 23, 2096−2106   DOI   ScienceOn
53 Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T., and Levine, A. J. (1998) Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554−564   DOI   ScienceOn
54 Sui, G., Affar el, B., Shi, Y., Brignone, C., Wall, N. R., et al. (2004) Yin Yang 1 is a negative regulator of p53. Cell 117, 859−872   DOI   ScienceOn
55 Oh, W., Yang, M. R., Lee, E. W., Park, K. M., Pyo, S., et al. (2006b) Jab1 mediates cytoplasmic localization and degradation of West Nile Virus capsid protein. J. Biol. Chem. (in press)
56 Tomoda, K., Kubota, Y., Arata, Y., Mori, S., Maeda, M., et al. (2002) The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J. Biol. Chem. 277, 2302−2310
57 Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997) Regulation of p53 stability by Mdm2. Nature 387, 299−303
58 Cope, G. A., Suh, G. S., Aravind, L., Schwarz, S. E., Zipursky, S. L., et al. (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298, 608−611
59 Lane, D. P. (1992) Cancer. p53, guardian of the genome. Nature 358, 15−16