Browse > Article

Regulation of NFAT Activation: a Potential Therapeutic Target for Immunosuppression  

Lee, Mina (Department of Biotechnology, Hankuk University of Foreign Studies)
Park, Jungchan (Department of Biotechnology, Hankuk University of Foreign Studies)
Abstract
The NFAT family of transcription factors plays pivotal roles in the development and function of the immune system. Their activation process is tightly regulated by calcium-dependent phosphatase calcineurin and has been a target of the immunosuppressive drugs cyclosporin A and FK-506. Although the clinical use of these drugs has dramatically increased the success of organ transplantation, their therapeutic use is limited by severe side effects. Recent studies for the calcineurin/NFAT signaling pathway have identified a number of cellular proteins that inhibit calcineurin function. Specific peptide sequences that interfere with the interaction between calcineurin and NFAT have also been characterized. Moreover, diverse approaches to identify small organic molecules that modulate NFAT function have been performed. This review focuses on the recent advances in our understanding of the inhibitory modulation of NFAT function, which may open up the additional avenues for immunosuppressive therapy.
Keywords
Calcineurin; Immunosuppression; Inhibitor; NFAT;
Citations & Related Records

Times Cited By Web Of Science : 28  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aceves, M., Duenas, A., Gomez, C., San Vicente, E., Crespo, M. S., et al. (2004) New pharmacological effect of salicylates:inhibition of NFAT-dependent transcription. J. Immunol. 173, 5721−5729
2 Coghlan, V. M., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., et al. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111
3 Djuric, S. W., BaMaung, N. Y., Basha, A., Liu, H., Luly, J. R., et al. (2000) 3,5-Bis(trifluoromethyl) pyrazoles: a novel class of NFAT transcription factor regulator. J. Med. Chem. 43, 2975−2981
4 Esau, C., Boes, M., Youn, H. D., Tatterson, L., Liu, J. O., et al. (2001) Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J. Exp. Med. 194, 1449−1459   DOI
5 Go, W. Y., Liu, X., Roti, M. A., Liu, F., and Ho, S. N. (2004) NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl. Acad. Sci. USA 101, 10673–10678
6 Park, J., Takeuchi, A., and Sharma, S. (1996) Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J. Biol. Chem. 271, 20914–20921
7 Roehrl, M. H., Kang, S., Aramburu, J., Wagner, G., Rao, A., et al. (2004) Selective inhibition of calcineurin–NFAT signaling by blocking protein-protein interaction with small organic molecules. Proc. Natl Acad. Sci. USA 101, 7554–7559
8 Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M., and Rao, A. (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316-324   DOI   ScienceOn
9 Park, S., Uesugi, M., and Verdine, G. L. (2000) A second calcineurin binding site on the NFAT regulatory domain Proc. Natl. Acad. Sci. USA 97, 7130−7135
10 Martinez-Martinez, S. and Redondo, J. M. (2004) Inhibitors of the calcineurin/NFAT pathway. Cur. Med. Chem. 11, 997−1007
11 Peng, S. L., Gerth, A. J., Ranger, A. M., and Glimcher, L. H. (2001) NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13−20   DOI   ScienceOn
12 Macian, F. (2005) NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472−484   DOI   ScienceOn
13 Feske, S., Okamur, H., Hogan, P. G., and Rao, A. (2003) $Ca^{2+}$/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 311, 1117−1132   DOI   ScienceOn
14 Imamura, R., Masuda, E. S., Naito, Y., Imai, S., Fujino, T., et al. (1998) Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells. J. Immunol. 161, 3455–3463
15 Martinez-Martinez, S., Rodrigue, A., Lopez-Maderuelo, M. D., Ortega-Perez, I., Vazque, J., et al. (2006) Blockade of NFAT activation by the second calcineurin binding site. J. Biol. Chem. 281, 6227−6235
16 Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P., and Crabtree, G. R. (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930−1934   DOI
17 Dumont, F. J. (2000) FK506, an immunosuppressant targeting calcineurin function Curr. Med. Chem. 7, 731−748
18 Miskin, J. E., Abrams, C. C., and Dixon, L. K. (2000) African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J. Virol. 74, 9412−9420
19 Trevillyan, J. M., Chiou, X. G., Chen, Y. W., Ballaro, S. J., Sheets, M. P., et al. (2001) Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. J. Biol. Chem. 276, 48118−48126
20 Chuvpilo, S., Avots, A., Berberich-Siebelt, F., Glockner, J., Fischer, C., et al. (1999) Multiple NF-ATc isoforms with individual transcriptional properties are synthesized in T lymphocytes. J. Immunol. 162, 7294–7301
21 Cho, J. S., Lee, Y. J., Shin, K. S., Jeong, S., Park, J., et al. (2004) In vitro selection of specific RNA aptamers for the NFAT DNA binding domain. Mol. Cells 18, 17−23
22 Luo, C., Burgeon, E., Carew, J. A., Badalian, T. M., McCaffrey, P. G., et al. (1996) Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol. Cell. Biol. 16, 3955–3966   DOI
23 Lin, X., Sikkink, R. A., Rusnak, F., and Barber, D. L. (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. J. Biol. Chem. 274, 36125-36131   DOI   ScienceOn
24 Okamura, H., Garcia-Rodriguez, C., Martinson, H., Qin, J., Virshup, D. M., et al. (2004) A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell. Biol. 24, 4184–4195   DOI
25 Zhu, J., Shibasaki, F., Price, R., Guillemot, J. C., Yano, T., et al. (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861   DOI   ScienceOn
26 Bae, S. J., Oum, J. H., Sharma, S., Park, J., and Lee, S. W. (2002) In vitro selection of specific RNA inhibitors of NFATc. Biochem. Biophys. Res. Commun. 298, 486−492
27 Kuromitsu, S., Fukunag, M., Lennard, A. C., Masuho, Y., and Nakada, S. (1997) 3-(13-Hydroxytridecyl)-1-[13-(3-pyridyl) tridecyl]pyridinium chloride (YM-53792), a novel inhibitor of NF-AT activation. Biochem. Pharmacol. 54, 999−1005   DOI   ScienceOn
28 Aramburu, J., Yaffe, M. B., Lopez-Rodriguez, C., Cantley, L. C., Hogan, P. G., et al. (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129−2133.   DOI
29 Dell'Acqua, M. L., Dodge, K. L., Tavalin, S. J., and Scott, J. D. (2002) Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315−360. J. Biol. Chem. 26, 48796−48802
30 Hogan, P. G., Chen, L., Nardone, J., and Rao, A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232   DOI   ScienceOn
31 Rodriguez, A., Martinez-Martinez, S., Lopez-Maderuelo, M. D., Ortega-Perez, I., and Redondo, J. M. (2005) The linker region joining the catalytic and the regulatory domains of can is essential for binding to NFAT. J. Biol. Chem. 280, 9980− 9984   DOI   ScienceOn
32 Aspeslet, L., Freitag, D., Trepanier, D., Abel, M., Naicker, S., et al. (2001) ISA(TX)247: a novel calcineurin inhibitor. Transplant. Proc. 33, 1048−1051
33 Arron, J. R., Winslow, M. M., Polleri, A., Chang, C. P., Wu, H., et al. (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595-600   DOI   ScienceOn
34 Kaini, A., Rao, A., and Aramburu, J. (2000) Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359−372
35 Aramburu, J., Garcia-Cozar, F., Raghavan, A., Okamura, H., Rao, A., et al. (1998) Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 6127−6137
36 Castigli, E., Pahwa, R., Good, R. A., Geha, R. S., and Chatila, T. A. (1993) Molecular basis of a multiple lymphokine deficiency in a patient with severe combined immunodeficiency. Proc. Natl. Acad. Sci. USA 90, 4728−4732
37 Baine, Y., Stankunas, B. M., Miller, P., Hobbs, C., Tiberio, L., et al. (1995) Functional characterization of novel IL-2 transcriptional inhibitors. J. Immunol. 154, 3667−3677
38 Chow, C. W., Rincon, M., Cavanagh, J., Dickens, M., and Davis, R. J. (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278, 1638–1641
39 Feske, S., Muller, J. M., Graf, D., Kroczek, R. A., Drager, R., et al. (1996) Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119−2126
40 Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: Regulation and Function. Annu. Rev. Immunol. 15, 707−747
41 Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S., and Kwon, H. M. (1999) Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl Acad. Sci. USA 96, 2538− 2542
42 Martinez-Martinez, S., Gomez del Arco, P., Armesilla, A. L., Aramburu, J., Luo, C., et al. (1997) Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells. Mol. Cell. Biol. 17, 6437−6447
43 Sun, L., Youn, H. D., Loh, C., Stolow, M., He, W., et al. (1998) Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8, 703–711   DOI   ScienceOn
44 Vega, R. B., Yang, J., Rothermel, B. A., Bassel-Duby, R., and Williams, R. S. (2002) Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem. 277, 30401−30407
45 Miskin, J. E., Abrams, C. C., Goatley, L. C., and Dixon, L. K. (1998) A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562−565
46 Noguchi, H., Matsushita, M., Okitsu, T., Moriwaki, A., Tomizaw, K., et al. (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat. Med. 10, 305-309   DOI   ScienceOn
47 Gomez del Arco, P., Martinez-Martinez, S., Maldonado, J. L., Ortega-Perez, I., and Redondo, J. M. (2000) A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem. 275, 13872–13878   DOI   ScienceOn
48 Shirane, M. and Nakayama, K. I. (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis Nat. Cell Biol. 5, 28−37   DOI   ScienceOn
49 Venkatesh, N., Feng, Y., DeDecker, B., Yacono, P., Golan, D., et al. (2004) Chemical genetics to identify NFAT inhibitors: potential of targeting calcium mobilization in immunosuppression. Proc. Natl Acad. Sci. USA 101, 8969–8974
50 Terui, Y., Saad, N., Jia, S., McKeon, F., and Yuan, J. (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem. 279, 28257-28265   DOI   ScienceOn
51 Nghiem, P., Pearson, G., and Langley, R. G. (2002) Tacrolimus and pimecrolimus: from clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. J. Am. Acad. Dermatol. 46, 228−241   DOI   ScienceOn
52 Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., et al. (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650   DOI   ScienceOn
53 Crabtree, G. R. and Olson, E. N. (2002) NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79
54 Kingsbury, T. J. and Cunningham, K. W. (2000) A conserved family of calcineurin regulators Genes Dev. 14, 1595−1604