Browse > Article

Structure and Tissue Distribution of a Trinucleotide-Repeat-containing Gene (cag-3) Expressed Specifically in the Mouse Brain  

Ji, Jin Woo (Department of Biology, Dongguk University)
Yang, Hye Lim (Department of Biology, Dongguk University)
Kim, Sun Jung (Department of Biology, Dongguk University)
Abstract
Using in silico approaches and RACE we cloned a full length trinucleotide (CAG) repeat-containing cDNA (cag-3). The cDNA is 2478 bp long and the deduced polypeptide consists of 140 amino acids of which 73 are glutamines. The genomic sequence spans approximately 79 kb on mouse chromosome 7 and the gene is composed of four exons. Standard and real-time PCR analyses of several mouse tissues showed that the gene is exclusively expressed in the brain and is not detected in embryonic stages. Within the brain, it is expressed throughout the forebrain region with predominant expression in the hypothalamus and olfactory bulb and very low levels in the mid- and hindbrain.
Keywords
Mouse Brain; Nuclear Localization Signal; Poly (Q); RACE; Real Time PCR; Trinucleotide Repeat Sequence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 MacDougall, C. N., Clyde, D., Wood, T., Todman, M., Harbison, D., et al. (1999) Sex-specific transcripts of the Dstpk61 serine/ threonine kinase gene in Drosophila melanogaster. Eur. J. Biochem. 262, 456-466   DOI   ScienceOn
2 Napierala, M., Parniewski, P., Pluciennik, A., and Wells, R. D. (2002) Long CTG CAG repeat sequences markedly stimulate intramolecular recombination. J. Biol. Chem. 277, 34087-34100   DOI   ScienceOn
3 Tompa, P. (2003) Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25, 847-855   DOI   ScienceOn
4 Gomes-Pereira, M., Fortune, M. T., Ingram, L., McAbney, J. P., and Monckton, D. G. (2004) Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13, 1815-1825   DOI   ScienceOn
5 Wharton, K. A., Yedvobnick, B., Finnerty, V. G., and ArtavanisTsakonas, S. (1985) opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell 40, 55-62   DOI   ScienceOn
6 Zoghbi, H. Y. and Orr, H. T. (2000) Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217-247   DOI   ScienceOn
7 Park, Y., Hong, S., Kim, S. J., and Kang, S. (2005) Proteasome function is inhibited by polyglutamine-expanded ataxin-1, the SCA1 gene product. Mol. Cells 19, 23-30
8 Sobczak, K. and Krzyzosiak, W. J. (2005) CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J. Biol. Chem. 280, 3898-3910   DOI   ScienceOn
9 Burke, J. R., Wingfield, M. S., Lewis, K. E., Roses, A. D., Lee, J. E., et al. (1994) The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat. Genet. 7, 521-524   DOI   ScienceOn
10 Nucifora, F. C., Jr., Ellerby, L. M., Wellington, C. L., Wood, J. D., Herring, W. J., et al. (2003) Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J. Biol. Chem. 278, 13047-13055   DOI   ScienceOn
11 Kang, S., Ohshima, K., Jaworski, A., and Wells, R. D. (1996) CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event. J. Mol. Biol. 258, 543-547   DOI   ScienceOn
12 Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562   DOI   ScienceOn
13 Faux, N. G., Bottomley, S. P., Lesk, A. M., Irving, J. A., Morrison, J. R., et al. (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res. 15, 537-551   DOI   ScienceOn
14 Bhide, P. G., Day, M., Sapp, E., Schwarz, C., Sheth, A., et al. (1996) Expression of normal and mutant huntingtin in the developing brain. J. Neurosci. 16, 5523-5535
15 Reddy, P. S. and Housman, D. E. (1997) The complex pathology of trinucleotide repeats. Curr. Opin. Cell Biol. 9, 364-372   DOI   ScienceOn
16 Chevalier-Larsen, E. S., O'Brien, C. J., Wang, H., Jenkins, S. C., Holder, L., et al. (2004) Castration restores function and neurofilament alterations of aged symptomatic males in a transgenic mouse model of spinal and bulbar muscular atrophy. J. Neurosci. 24, 4778-4786   DOI   ScienceOn
17 Stallings, R. L. (1994) Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: implications for human genetic diseases. Genomics 21, 116-121   DOI   ScienceOn
18 Watase, K., Weeber, E. J., Xu, B., Antalffy, B., Yuva-Paylor, L., et al. (2002) A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34, 905-919   DOI   ScienceOn
19 Jakupciak, J. P. and Wells, R. D. (2000) Gene conversion (recombination) mediates expansions of $CTG{\cdot}CAG$ repeats. J. Biol. Chem. 275, 40003-40013   DOI   ScienceOn
20 Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., et al. (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl. Acad. Sci. USA 96, 4604-4609
21 Freiman, R. N. and Tjian, R. (2002) Neurodegeneration. A glutamine-rich trail leads to transcription factors. Science 296, 2149-2150   DOI   ScienceOn
22 Paulson, H. L. and Fischbeck, K. H. (1996) Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79-107   DOI   ScienceOn
23 Nair, R., Carter, P., and Rost, B. (2003) NLSdb: database of nuclear localization signals. Nucleic Acids Res. 31, 397-399   DOI
24 Strong, T. V., Tagle, D. A., Valdes, J. M., Elmer, L. W., Boehm, K., et al. (1993) Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nat. Genet. 5, 259-265   DOI   ScienceOn
25 Gaspar, C., Jannatipour, M., Dion, P., Laganiere, J., Sequeiros, J., et al. (2000) CAG tract of MJD-1 may be prone to frameshifts causing polyalanine accumulation. Hum. Mol. Genet. 9, 1957-1966   DOI   ScienceOn
26 Kim, S. J., Shon, B. H., Kang, J. H., Hahm, K. S., Yoo, O. J., et al. (1997) Cloning of novel trinucleotide-repeat (CAG) containing genes in mouse brain. Biochem. Biophys. Res. Commun. 240, 239-243   DOI   ScienceOn
27 Brown, L. Y. and Brown, S. A. (2004) Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20, 51-58   DOI   ScienceOn
28 Masino, L., Nicastro, G., Menon, R. P., Dal Piaz, F., Calder, L., et al. (2004) Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine- containing protein ataxin-3. J. Mol. Biol. 344, 1021-1035   DOI   ScienceOn