Browse > Article

Alterations in the Localization of Calbindin D28K-, Calretinin-, and Parvalbumin-immunoreactive Neurons of Rabbit Retinal Ganglion Cell Layer from Ischemia and Reperfusion  

Kwon, Oh-Ju (Department of Biology, College of Natural Sciences, Kyungpook National University)
Kim, Jung-Yeol (Department of Ophthalmology, College of Medicine, Kyungpook National University)
Kim, Si-Yeol (Department of Ophthalmology, College of Medicine, Kyungpook National University)
Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
Abstract
Calcium-binding proteins are thought to play important roles in calcium buffering. The present study investigated the effects of ischemia and reperfusion on calbindin D28K, calretinin, and parvalbumin immunoreactivity in the ganglion cell layer of the rabbit. Rabbits were administered ischemic damage by increasing the intraocular pressure. After 60 and 90 min of ischemia, reperfusion (7 d) was allowed to occur. The b-wave of the electroretinogram (ERG) was reduced by more than 50% and almost 80% in retina given ischemia for 60 and 90 min, respectively. The oscillatory potential (OPs) wave was reduced approximately 50% at 60 min ischemia and 70% at 90 min ischemia. In both normal and ischemic-treated retina, calcium-binding protein immunoreactivity was seen in many cells in the ganglion cell layer. In eyes subjected to 60 min ischemia, there was a decrease of the density of calbindin D28K- (8.29%), calretinin- (14.44%), and parvalbumin- (26.83%) immunoreactive (IR) cells compared to the control retina. In eyes subjected to 90 min ischemia, there was a higher decrease of the density of calbindin D28K- (18.48%), calretinin- (33.59%), and parvalbumin- (54.26%) IR cells than at 60 min. Some calcium-binding protein-IR neurons, especially calretinin-IR neurons, showed aggregations that were abnormally packed together in retina subjected to ischemia for 90 min. The results show that calbindin D28K-, calretinin-, and parvalbumin-IR cells in the ganglion cell layer are susceptible to ischemic damage and reperfusion. The degree of reduction varied among different calcium-binding proteins and ischemic damage times. These results suggest that calbindin D28K-containing neurons are less susceptible to ischemic damage than calretinin- and parvalbumin-containing neurons in the ganglion cell layer of rabbit retina.
Keywords
Calbindin D28K; Calretinin; Immunoreactivity; Ischemia; Parvalbumin; Retinal Ganglion Cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Adachi, K., Fujita, Y., Morizane, C., Akaike, A., Ueda, M., et al. (1998) Inhibition of NMDA receptors and nitric oxide synthase reduces ischemic injury of the retina. Eur. J. Pharmacol. 350, 53-57   DOI   ScienceOn
2 Block, F. and Schwarz, M. (1998) The b-wave of the electroretinogram as an index of retinal ischemia. Gen. Pharmacol. 30, 281-287   DOI   ScienceOn
3 Casini, G., Rickman, D. W., and Brecha, N. C. (1995) AII amacrine cell population in the rabbit retina: identification by parvalbumin immunoreactivity. J. Comp. Neurol. 356, 132- 142   DOI   ScienceOn
4 Hangai, M., Miyamoto, K., Hiroi, K., Tujikawa, A., Ogura, Y., et al. (1999) Roles of constitutive nitric oxide synthase in postischemic rat retina. Invest. Ophthalmol. Vis. Sci. 40, 450-458
5 Hamano, K., Kiyama, H., Emson, P. C., Manabe, R., Nakauchi, M., et al. (1990) Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. J. Comp. Neurol. 302, 417-424   DOI   ScienceOn
6 Jeon, M.-H. and Jeon, C.-J. (1998) Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci. Res. 32, 75-84   DOI   ScienceOn
7 Joo, C.-K., Choi, J.-S., Ko, H.-W., Park, K.-Y., Sohn, S., et al. (1999) Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest. Ophthalmol. Vis. Sci. 40, 713-720
8 Kim, K.-Y., Ju, W.-K., and Neufeld, A. H. (2004) Neuronal susceptibility to damage: comparison of the retinas of young, old and old/caloric restricted rats before and after transient ischemia. Neurobiol. Aging 25, 491-500   DOI   ScienceOn
9 Lewit-Bentley, A. and Rety, S. (2000) EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637-643   DOI   ScienceOn
10 Masland, R. H. (2001) Neuronal diversity in the retina. Curr. Opin. Neurobiol. 11, 431-436   DOI   ScienceOn
11 Massey, S. C. and Mills, S. L. (1999) Antibody to calretinin stains AII amacrine cells in the rabbit retina: double-label and confocal analyses. J. Comp. Neurol. 411, 3-18   DOI   ScienceOn
12 Mikkonen, M., Alafuzoff, I., Tapiola, T., Soininen, H., and Miettinen, R. (1999) Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in alzheimer's disease. Neuroscience 92, 515-532   DOI   ScienceOn
13 Nag, T. C. and Wadhwa, S. (1999) Developmental expression of calretinin immunoreactivity in the human retina and a comparison with two other EF-hand calcium binding proteins. Neuroscience 91, 41-50   DOI   ScienceOn
14 Yamamoto, T. and Kitazawa, Y. (1998) Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog. Retin. Eye Res. 17, 127-143   DOI   ScienceOn
15 Osborne, N. N., Wood, J., and Muller, A. (1995) The influence of experimental ischaemia on protein kinase C and the GABAergic system in the rabbit retina. Neuropharmacology 34, 1279-1288   DOI   ScienceOn
16 Rockhill, R. L., Daly, F. J., MacNeil, M. A., Brown, S. P., and Masland, R. H. (2002) The diversity of ganglion cells in a mammalian retina. J. Neurosci. 22, 3831-3843
17 Sanna, P. P., Keyser, K. T., Battenberg, E., and Bloom, F. E. (1990) Parvalbumin immunoreactivity in the rat retina. Neurosci. Lett. 118, 136-139   DOI   ScienceOn
18 Adachi, K., Kashii, S., Masai, H., Ueda, M., Morizane, C., et al. (1998) Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch. Clin. Exp. Ophthalmol. 236, 766-774   DOI
19 Kristian, T. and Siesjo, B. K. (1998) Calcium in ischemic cell death. Stroke 29, 705-718   DOI   ScienceOn
20 Schafer, B. W. and Heizmann, C. W. (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134-140
21 Safa, R. and Osborne, N. N. (2000) Retinas from albino rats are more susceptible to ischaemic damage than age-matched pigmented animals. Brain Res. 862, 36-42   DOI   ScienceOn
22 Neufeld, A. H., Kawai, S., Das, S., Vora, S., Gachie, E., et al. (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp. Eye Res. 75, 521-528   DOI   ScienceOn
23 Flammer, J. and Orgül, S. (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog. Retin. Eye Res. 17, 267-289   DOI   ScienceOn
24 Jeon, Y.-K., Kim, S.-Y., and Jeon, C.-J. (2001) Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina. Mol. Cells 11, 250-256
25 Polans, A., Baehr, W., and Palczewski, K. (1996) Turned on by Ca2+! The physiology and pathology of Ca(2+)-binding proteins in the retina. Trends Neurosci. 19, 547-554   DOI   ScienceOn
26 Chao, H. M. and Osborne, N. N. (2001) Topically applied clonidine protects the rat retina from Ischaemia/reperfusion by stimulating alpha (2)-adrenoceptors and not by an action on imidazoline receptors. Brain Res. 904, 126-136   DOI   ScienceOn
27 Choi, D. W. (2001) Excitotoxicity, apoptosis, and ischemic stroke. J. Biochem. Mol. Biol. 34, 8-14
28 Chun, M.-H., Kim, I.-B., Ju, W.-K., Kim, K.-Y., Lee, M.-Y., et al. (1999) Horizontal cells of the rat retina are resistant to degenerative processes induced by ischemia-reperfusion. Neurosci. Lett. 260, 125-128   DOI   ScienceOn
29 Roger, J. H. (1987) Calretinin: a gene for a novel calciumbinding protein expressed principally in neurons. J. Cell Biol. 105, 1343-1353   DOI   ScienceOn
30 Vecino, E., Caminos, E., Ugarte, M., Martin-Zanca, D., and Osborne, N. N. (1998) Immunohistochemical distribution of neurotrophins and their receptors in the rat retina and the effects of ischemia and reperfusion. Gen. Pharmacol. 30, 305- 314   DOI   ScienceOn
31 Song, G., Yang, X., Zhang, Z., and Zhang, D. (2001) Effects of pressure induced retinal ischemia on ERG in rabbit. Yan Ke Xue Bao. 17, 213-216
32 Choi, D. W. (1996) Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 6, 667-672   DOI   ScienceOn
33 Katano, H., Ishihara, M., Shiraishi, Y., and Kawai, Y. (2001) Effects of aging on the electroretinogram during ischemiareperfusion in rats. Jpn. J. Physiol. 51, 89-97   DOI
34 Massey, S. C. and Mills, S. L. (1996) A calbindin-immunoreactive cone bipolar cell type in the rabbit retina. J. Comp. Neurol. 366, 15-33   DOI   ScienceOn
35 Perlman, J. I., McCole, S. M., Pulluru, P., Chang, C. J., Lam, T. T., et al. (1996) Disturbances in the distribution of neurotransmitters in the rat retina after ischemia. Curr. Eye Res. 15, 589-596   DOI
36 Toriu, N., Akaike, A., Yasuyoshi, H., Zhang, S., Kashii, S., et al. (2000) Lomerizine, a $Ca^{2+}$ channel blocker, reduces glutamate- induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp. Eye Res. 70, 475-484   DOI   ScienceOn
37 Buchi, E. R. (1992) Degeneration of retinal cells of the rat in pressure-induced ischemia-reperfusion damage: an electron microscopy study. Klin. Monatsbl. Augenheilkd 200, 494- 497   DOI   ScienceOn
38 Heizmann, C. W. and Braun, K. (1995) Calcium regulation by calcium-binding proteins in neurodegenerative disorders, Springer-Verlag, NY
39 Baimbridge, K. G., Celio, M., and Rogers, J. H. (1992) Calciumbinding proteins in the nervous system. Trends Neurosci. 15, 303-307   DOI   ScienceOn
40 Casini, G., Rickman, D. W., Trasarti, L., and Brecha, N. C. (1998) Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. Brain Res. Dev. Brain Res. 111, 107-117   DOI   ScienceOn
41 Hof, P. R., Glezer, I. I., Conde, F., Flagg, R. A., Rubin, M. B., et al. (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J. Chem. Neuroanat. 16, 77-116   DOI   ScienceOn
42 Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375-475   DOI   ScienceOn
43 Ng, Y. K., Zeng, X. X., and Ling, E. A. (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res. 1018, 66-72   DOI   ScienceOn
44 Pochet, R., Pasteels, B., Seto-Ohshima, A., Bastianeli, E., Kitajima, S., et al. (1991) Calmodulin and calbindin localization in retina from six vertebrate species. J. Comp. Neurol. 314, 750-762   DOI   ScienceOn
45 Larsen, A. K. and Osborne, N. N. (1996) Involvement of adenosine in retinal ischemia. Studies on the rat. Invest. Ophthalmol. Vis. Sci. 37, 2603-2611
46 Volgyi, B., Pollak, E., Buzas, P., and Gabriel, R. (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res. 763, 79-86   DOI   ScienceOn
47 Kageyama, T., Ishikawa, A., and Tamai, M. (2000) Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion. Jpn. J. Ophthalmol. 44, 110-114   DOI   ScienceOn
48 Sanna, P. P., Keyser, K. T., Celio, M. R., Karten, H. J., and Bloom, F. E. (1993) Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Res. 600, 141-150   DOI   ScienceOn
49 Jeon, C.-J., Strettoi, E., and Masland, R. H. (1998) The major cell populations of the mouse retina. J. Neurosci. 18, 8936- 8946