Browse > Article

Critical Role of the Cysteine 323 Residue in the Catalytic Activity of Human Glutamate Dehydrogenase Isozymes  

Yang, Seung-Ju (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Department of Biomedical Laboratory Science, College of Health Science, Yonsei University)
Cho, Eun Hee (Department of Science Education, College of Education, Chosun University)
Choi, Myung-Min (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Lee, Hyun-Ju (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Huh, Jae-Wan (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Choi, Soo Young (Department of Genetic Engineering, College of Life Sciences, Hallym University)
Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
Abstract
The role of residue C323 in catalysis by human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) was examined by substituting Arg, Gly, Leu, Met, or Tyr at C323 by cassette mutagenesis using synthetic human GDH isozyme genes. As a result, the $K_m$ of the enzyme for NADH and ${\alpha}-ketoglutarate$ increased up to 1.6-fold and 1.1-fold, respectively. It seems likely that C323 is not responsible for substrate-binding or coenzyme-binding. The efficiency ($k_{cat}/K_m$) of the mutant enzymes was only 11-14% of that of the wild-type isozymes, mainly due to a decrease in $k_{cat}$ values. There was a linear relationship between incorporation of [$^{14}C$]p-chloromercuribenzoic acid and loss of enzyme activity that extrapolated to a stoichiometry of one mol of [$^{14}C$] incorporated per mol of monomer for wild type hGDHs. No incorporation of [$^{14}C$]p-chloromercuribenzoic acid was observed with the C323 mutants. ADP and GTP had no effect on the binding of p-chloromercuribenzoic acid, suggesting that C323 is not directly involved in allosteric regulation. There were no differences between the two hGDH isozymes in sensitivities to mutagenesis at C323. Our results suggest that C323 plays an important role in catalysis by human GDH isozymes.
Keywords
Cassette Mutagenesis; Chemical Modification; Enzyme Efficiency; Glutamate Dehydrogenase; Isozymes; Reactive Cysteine;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Essential active-site lysine of brain glutamate dehydrogenase isoproteins /
[ Kim, S.W.;Lee, J.;Song, M.S.;Choi, S.Y.;Cho, S.W. ] / J. Neurochem.
2 Anagnou, N. P., Seuanez, H., Modi, W., O'rien, S. J., Papamatheakis, J., et al. (1993) Chromosomal mapping of two members of the human glutamate dehydrogenase (GLUD) gene family to chromosomes 10q22.3-q23 and Xq22-q23. Hum. Hered. 43, 351-356   DOI
3 Baker, P. J., Britton, K. L., Rice, D. W., Rob, A., and Stillman, T. J. (1992) Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold implications for nucleotide specificity. J. Mol. Biol. 228, 662-671   DOI
4 Batra, S. P. and Colman, R. F. (1986) Isolation and identification of cysteinyl peptide labeled by 6-[(4-bromo-2,3-dioxobutyl) thio]-6-deaminoadenosine 5′-diphosphate in the reduced diphosphopyridine nucleotide inhibitory site of glutamate dehydrogenase. Biochemistry 25, 3508-3515   DOI   ScienceOn
5 Cho, S.-W. and Yoon, H.-Y. (1999) Photoaffinity labeling of brain glutamate dehydrogenase isoproteins with an azido-ADP. J. Biol. Chem. 274, 13948-13953   DOI   ScienceOn
6 Cho, S.-W., Yoon, H.-Y., Ahn, J.-Y., Choi, S. Y., and Kim, T. U. (1998) Identification of an NAD+ binding site of brain glutamate dehydrogenase isoproteins by photoaffinity labeling. J. Biol. Chem. 273, 31125-31130   DOI   ScienceOn
7 Choi, S. Y., Hong, J. W., Song, M.-S., Jeon, S. G., Bahn, J. H., et al. (1999) Different antigenic reactivities of bovine brain glutamate dehydrogenase isoproteins. J. Neurochem. 72, 2162-2169   DOI
8 Frei, B. and Richter, C. (1988) Mono (ADP-ribosylation) in rat liver mitochondria. Biochemistry 27, 529-535   DOI   ScienceOn
9 Hussain, M. H., Zannis, V. I., and Plaitakis, A. (1989) Characterization of glutamate dehydrogenase isoproteins purified from the cerebellum of normal subjects and patients with degenerative neurological disorders and from human neoplastic cell lines. J. Biol. Chem. 264, 20730-20735
10 Jorcke, D., Ziegler, M., Herrero-Yraola, A., and Schweiger, K. (1998) Enzymic cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J. 332, 189-193
11 Kim, S. W., Lee, J., Song, M. S., Choi, S. Y., and Cho, S.-W. (1997) Essential active-site lysine of brain glutamate dehydrogenase isoproteins. J. Neurochem. 69, 418-422   ScienceOn
12 Tzimagiorgis, G. and Moschonas, N. K. (1991) Molecular cloning, structure and expression analysis of a full-length mouse brain glutamate dehydrogenase cDNA. Biochim. Biophys. Acta 1089, 250-253   ScienceOn
13 Lilley, K. S. and Engel, P. C. (1992) The essential active-site lysines of clostridial glutamate dehydrogenase : A study with pyridoxal-5′-phosphate. Eur. J. Biochem. 207, 533-540   DOI   ScienceOn
14 Mavrothalassitis, G., Tzimagiorgis, G., Mitsialis, A., Zannis, V. I., Plaitakis, A., et al. (1988) Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase:evidence for a small gene family. Proc. Natl. Acad. Sci. USA 85, 3494-3498
15 Stanley, C. A., Lieu, Y. K., Hsu, B. Y. L., Burlina, A. B., Greenberg, C. R., et al. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. New. Engl. J. Med. 338, 1353-1357
16 Yang, S.-J., Huh, J.-W., Hong, H.-N., Kim, T. U., and Cho, S.-W. (2004) Important role of Ser443 in different thermal stability of human glutamate dehydrogenase isozymes. FEBS Lett. 562, 59-64   DOI   ScienceOn
17 Yoon, H.-Y., Cho, E. H., Kwon, H. Y., Choi, S. Y., and Cho, S.-W. (2002a) Importance of glutamate-279 for the coenzyme binding of human glutamate dehydrogenase. J. Biol. Chem. 277, 41448-41454   DOI   ScienceOn
18 Plaitakis, A., Spanaki, C., Mastorodemos, V., and Zaganas, I. (2003) Study of structure-function relationships in human glutamate dehydrogenases reveals novel molecular mechanisms for the regulation of the nerve tissue-specific (GLUD2) isoenzyme. Neurochem. Int. 43, 401-410   DOI   ScienceOn
19 Fersht, A. (1985) In: Enzyme Structure and Mechanism, pp. 98-120, Freeman, W. H. (ed.), New York
20 Dutuit, M., Didier-Bazes, M., Vergnes, M., Mutin, M., Conjard, A., et al. (2000) Specific alteration in the expression of glial fibrillary acidic protein, glutamate dehydrogenase, and glutamine synthetase in rats with genetic absence epilepsy. Glia 32, 15-24   DOI   ScienceOn
21 Smith, T. J., Schmidt, T., Fang, J., Wu, J., Siuzdak, G., et al. (2002) The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J. Mol. Biol. 318, 765-777   DOI   ScienceOn
22 Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557-580   DOI
23 Lee, E. Y., Yoon, H. Y., Ahn, J.-Y., Choi, S. Y., and Cho, S.-W. (2001) Identification of GTP binding site of human glutamate dehydrogenase using cassette mutagenesis and photoaffinity labeling. J. Biol. Chem. 276, 47930-47936
24 Valinger, Z., Engel, P. C., and Metzler, D. E. (1993) Is pyridoxal 5′-phosphate an affinity label for phosphate-binding sites in proteins? : the case of bovine glutamate dehydrogenase. Biochem. J. 294, 835-839
25 Yang, S.-J., Huh, J.-W., Kim, M. J., Lee, W.-J., Kim, T. U., et al. (2003) Regulatory effects of 5′-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85, 581-586   DOI   ScienceOn
26 Plaitakis, A., Berl, S., and Yahr, M. D. (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann. Neurol. 15, 144-153   DOI   ScienceOn
27 Lee, K. H., Lee, W.-J., Yang, S.-J., Huh, J.-W., Choi, J., et al. (2004) Inhibitory effects of Cimicifuga heracleifolia on glutamate formation and activities of gutamate dehydrogenase in cultured islets. Mol. Cells 17, 509-514
28 Yoon, H.-Y., Lee, E.-Y., and Cho, S.-W. (2002b) Cassette mutagenesis and photoaffinity labeling of adenine binding domain of ADP regulatory site within human glutamate dehydrogenase. Biochemistry 41, 6817-6823   DOI   ScienceOn
29 Abe, T., Ishiguro, S. I., Saito, H., Kiyosawa, M., and Tamai, M. (1992) Partially deficient glutamate dehydrogenase activity and attenuated oscillatory potentials in patient with spinocerebellar degeneration. Invest. Ophthalmol. Vis. Sci. 33, 447-452
30 Cosson, M. P., Gros, C., and Talbot, J. C. (1976) Identification of a cysteine residue of glutamate dehydrogenase that binds p-chloromercuribenzoic acid. Biochem. Biophys. Res. Commun. 72, 1304-1310   DOI   ScienceOn
31 Yorifuji, T., Muroi, J., Uematsu, A., Hiramatsu, H., and Momoi, T. (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum. Genet. 104, 476-479   DOI
32 Plaitakis, A., Metaxari, M., and Shashidharan, P. (2000) Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms: implications for biologic function. J. Neurochem. 75, 1862-1869   DOI
33 Shashidharan, P., Michaelidis, T. M., Robakis, N. K., Kresovali, A., Papamatheakis, J., et al. (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J. Biol. Chem. 269, 16971-16976
34 Shashidharan, P., Clarke, D. D., Ahmed, N., Moschonas, N., and Plaitakis, A. (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. J. Neurochem. 68, 1804-1811   ScienceOn
35 Ahn, J.-Y., Choi, S. Y., and Cho, S.-W. (1999) Identification of lysine residue involved in inactivation of brain glutamate dehydrogenase isoproteins by o-phthalaldehyde. Biochimie 81, 1123-1129   DOI   ScienceOn
36 Cho, S.-W., Yoon, H.-Y., Ahn, J.-Y., Lee, E.-Y., and Lee, J. (2001) Cassette mutagenesis of Lysine 130 of human glutamate dehydrogenase: An essential residue in catalysis. Eur. J. Biochem. 268, 3205-3213   DOI   ScienceOn
37 Pandey, A., Sheikh, S., and Katiyar, S. S. (1996) Identification of cystein and lysine residues present at the active site of beef liver glutamate dehydrogenase by o-phthalaldehyde. Biochim. Biophys. Acta 1293, 122-128   ScienceOn
38 Herrero-Yraola, A., Bakhit, S. M. A., Franke, P., Weise, C., Schweiger, M., et al. (2001) Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J. 20, 2404-2412   DOI   ScienceOn
39 Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R., et al. (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266-276   DOI
40 Bryla, J., Michalik, M., Nelson, J., and Erecinska, M. (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43, 1187-1195   DOI   ScienceOn
41 Yoon, H.-Y., Cho, E. H., Yang, S.-J., Lee, H.-Y., Huh, J.-W., et al. (2004) Reactive amino acid residues involved in glutamate-binding of human glutamate dehydrogenase isozymes. Biochimie 86, 261-267   DOI   ScienceOn
42 Plaitakis, A., Flessas, P., Natsiou, A. B., and Shashidharan, P. (1993) Glutamate dehydrogenase deficiency in cerebellar degenerations: clinical, biochemical and molecular genetic aspects. Can. J. Neurol. Sci. Suppl. 3, S109-S116
43 Syed, S. E.-H., Hornby, D. P., Brown, P. E., Fitton, J. E., and Engel, P. C. (1994) Site and significance of chemically modifiable cysteine residues in glutamate dehydrogenase of Clostridium symbiosum and the use of protection studies to measure coenzyme binding. Biochem. J. 298, 107-113
44 Cho, S.-W., Lee, J., and Choi, S. Y. (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. 233, 340-346   DOI   ScienceOn
45 Fisher, H. F. (1985) L-Glutamate dehydrogenase from bovine liver. Methods Enzymol. 113, 16-27   DOI
46 Cho, S.-W. and Lee, J. E. (1996) Modification of brain glutamate dehydrogenase isoproteins with pyridoxal 5′-phosphate. Biochimie 78, 817-821   DOI   ScienceOn
47 Bailey, J., Bell, E. T., and Bell, J. E. (1982) Regulation of bovine glutamate dehydrogenase. J. Biol. Chem. 257, 5579-5583
48 Cho, S.-W., Cho, E. H., Hwang, S.-H., and Choi, S. Y. (1999) Reactive cysteine residue of bovine brain glutamate dehydrogenase isoproteins. Mol. Cells 9, 91-98
49 Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130   DOI
50 Colon, A., Plaitakis, A., Perakis, A., Berl, S., and Clarke, D. D. (1986) Purification and characterization of a soluble and a particulate glutamate dehydrogenase from a rat brain. J. Neurochem. 46, 1811-1819
51 Julliard, J. and Smith, E. L. (1979) Partial amino acid sequence of the glutamate dehydrogenase of human liver and a revision of the sequence of the bovine enzyme. J. Biol. Chem. 254, 3427-3438
52 Michaelidis, T. M., Tzimagiorgis, G., Moschonas, N. K., and Papamatheakis, J. (1993) The human glutamate dehydrogenase gene family: gene organization and structural characterization. Genomics 16, 150-160   DOI   ScienceOn
53 Teller, J. K., Smith, R. J., McPherson, M. J., Engel, P. C., and Guest, J. R. (1992) Correlation of intron-exon organization with the three-dimensional structure in glutamate dehydrogenase. Eur. J. Biochem. 206, 151-159   DOI   ScienceOn