Browse > Article

Expression of Arabidopsis Phytochelatin Synthase 2 Is Too Low to Complement an AtPCS1-defective Cad1-3 Mutant  

Lee, Sangman (Department of Agricultural Chemistry, Division of Applied Biology and Chemistry, Kyungpook National University)
Kang, Beom Sik (School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
Abstract
Phytochelatins play an important role in heavy metal detoxification in plants as well as in other organisms. The Arabidopsis thaliana mutant cad1-3 does not produce detectable levels of phytochelatins in response to cadmium stress. The hypersensitivity of cad1-3 to cadmium stress is attributed to a mutation in the phytochelatin synthase 1 (AtPCS1) gene. However, A. thaliana also contains a functional phytochelatin synthase 2 (AtPCS2). In this study, we investigated why the cad1-3 mutant is hypersensitive to cadmium stress despite the presence of AtPCS2. Northern and Western blot analyses showed that expression of AtPCS2 is weak compared to AtPCS1 in both roots and shoots of transgenic Arabidopsis. The lower level of AtPCS2 expression was confirmed by RT-PCR analysis of wild type Arabidopsis. Moreover, no tissue-specific expression of AtPCS2 was observed. Even when AtPCS2 was under the control of the AtPCS1 promoter or of the cauliflower mosaic virus 35S promoter (CaMV 35S) it was not capable of fully complementing the cad1-3 mutant for cadmium resistance.
Keywords
Arabidopsis; Cad1-3; Cadmium; Phytochelatin; Phytochelatin Synthase;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Clemens, S., Kim, E. J., Neumann, D., and Schroeder, J. I. (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18, 3325-3333   DOI   ScienceOn
2 Cobbett, C. S. (2000b) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211-216
3 Ha, S.-B., Smith, A. P., Howden, R., Dietrich, W. M., Bugg, S., et al. (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11, 1153-1164   DOI
4 Howden, R., Goldsbrough, P. B., Anderson, C. R., and Cobbett, C. S. (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107, 1059-1066   DOI   ScienceOn
5 Lee, S., Moon, J. S., Domier, L. L., and Korban, S. S. (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol. Biochem. 40, 727-733   DOI   ScienceOn
6 Lee, S., Moon, J. S., Ko, T.-S., Petros, D., Goldsbrough, P. B., et al. (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 131, 656-663   DOI   ScienceOn
7 Vatamaniuk, O. K., Mari, S., Lu, Y.-P., and Rea, P. A. (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA 96, 7110-7115
8 Zenk, M. H. (1996) Heavy metal detoxification in higher plants:a review. Gene 179, 21-30   DOI   ScienceOn
9 Grill, E., Loffler, S., Winnacker, E.-L., and Zenk, M. H. (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86, 6838-6842
10 Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743   DOI   ScienceOn
11 Vatamaniuk, O. K., Mari, S., Lu, Y.-P., and Rea, P. A. (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J. Biol. Chem. 275, 31451-31459   DOI   ScienceOn
12 Joshi, C. P. (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 15, 6643-6653   DOI
13 Rauser, W. E. (1990) Phytochelatins. Annu. Rev. Biochem. 59, 61-86   DOI   ScienceOn
14 Chang, J.-H., Ryang, Y.-S., Morio, T., Lee, S.-K., and Chang, E.-J. (2004) Tyrichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-${kappa}B$ activation. Mol. Cells 18, 177-185
15 Cobbett, C. S. (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825-832   DOI   ScienceOn
16 Grill, E., Winnacker, E. L., and Zenk, M. H. (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230, 674-676   DOI   ScienceOn
17 Cobbett, C. S., May, M. J., Howden, R., and Rolls, B. (1998) The glutathione-deficient, cadmium-sensitive mutants, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine Sangman Lee & Beom Sik Kang 87 synthetase. Plant J. 16, 73-78   DOI   ScienceOn
18 Murashige, T. and Skoog, T. (1962) A revised medium for growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-479   DOI
19 Oven, M., Page, J. E., Zenk, M. H., and Kutchan, T. M. (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J. Biol. Chem. 277, 4747-4754   DOI   ScienceOn
20 Steffens, J. C. (1990) The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Mol. Biol. 41, 553-575   ScienceOn
21 Cobbett, C. S. (1999) A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci. 4, 335-337   DOI   ScienceOn
22 Lee, S. and Korban, S. S. (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215, 689-693   DOI
23 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254   DOI   ScienceOn
24 Cazale, A.-C. and Clemens, S. (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett. 507, 215-219   DOI   ScienceOn
25 Smale, S. T. (1997) Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. Biochim. Biophys. Acta 1351, 73-88