Browse > Article
http://dx.doi.org/10.7858/eamj.2016.023

RELATIONS BETWEEN QUATERNIONIC DIFFERENTIAL AND THE CORRESPONDING CAUCHY RIEMANN SYSTEM  

Kang, Han Ul (Department of Mathematics, Pusan National University)
Kim, Min Ji (Department of Mathematics, Pusan National University)
Shon, Kwang Ho (Department of Mathematics, Pusan National University)
Publication Information
Abstract
In this paper, we investigate several properties of quaternionic functions. We research some dierentials of quaternionic functions, and relations between the dierentials and the corresponding Cauchy Riemann system in Clifford analysis
Keywords
Clifford analysis; corresponding Cauchy Riemann system; differential of quaternionic function; left-differential; right-differential;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. E. Luna-Elizarraras and M. Shapiro, A survey on the (hyper-) derivatives in complex, quaternionic and Clifford analysis, Milan J. Math. 79 (2011), 521-542.   DOI
2 H. S. Jung and K. H. Shon, Properties of hyperholomorphic functions on dual ternary numbers, J. Korean Soc. Math. Educ. Ser. B, Pure Appl. Math. 20 (2013), 129-136.
3 H. S. Jung, S. J. Ha, K. H. Lee, S. M. Lim and K. H. Shon, Structures of hyperholomorphic functions on dual quaternion numbers, Honam Math. J. 35 (2013), 809-817.   DOI
4 H. U. Kang and K. H. Shon, Relations of L-regular functions on quaternions in Clifford analysis, East Asian Math. J. 31(5) (2015), 667-675.   DOI
5 H. U. Kang, M. J. Kim and K. H. Shon, Several properties of quaternionic regular functions in Clifford analysis, Honam Math. J. 37 (2015), 569-575.   DOI
6 J. E. Kim, S. J. Lim and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal. Art. ID 136120 (2013), 7 pages.
7 J. E. Kim, S. J. Lim and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal. Art. ID 654798 (2014), 8 pages.
8 H. Koriyama, H. Mae and K. Nono, Hyperholomorphic functions and holomorphic functions in quaternionic analysis, Bull. of Fukuoka Univ. of Edu. 60 (2011), 1-9.
9 M. Naser, Hyperholomorphic functions, Siberian Math. J. 12 (1971), 959-968.
10 K. Nono, On two approaches to regular function theory complex Clifford analysis, Bull. of Fukuoka Univ. of Edu. 44 (1995), 1-13.