1 |
S. Akiyama and J.M. Thuswalender, A Survey on Topological Properties of Tiles Related to Number Systems, Geom. Dedica. 109 (2004), 89-105.
DOI
|
2 |
O.A. Campoli, A principal ideal domain that is not a Euclidean domain, Amer. Math. Monthly, 95 (1988), no. 9, 868-871.
DOI
ScienceOn
|
3 |
K. Conrad, Remarks about Euclidean domains, an expository paper in Ring Thery.
|
4 |
K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, (1990).
|
5 |
D. Goffinet, Number systems with a complex base: a fractal tool for teaching topology, Amer. Math. Monthly 98 (1991), no. 3, 249255.
|
6 |
L. Guillen, A principal ideal domain that is not a Euclidean domain, a personal note in website.
|
7 |
K. Groechenig and W.R. Madych, Multiresolution Analysis, Haar bases and self-similar tilings of , IEEE Trans. Inform. Th. 38(2) Part2 (2)(1992), 556-568.
DOI
ScienceOn
|
8 |
S.I. Khmelnik, Specialized digital computer for operations with complex numbers, Questions of Radio Electronics (in Russian) XII (2)(1964).
|
9 |
S.I. Khmelnik, Positional coding of complex numbers, Questions of Radio Electronics (in Russian) XII (9)(1966).
|
10 |
D.E. Knuth, An Imaginary Number System, Communication of the ACM-3 (4) (1960).
|
11 |
N. Koblitz, CM-curves with good cryptographic properties, Advances in Cryptology-CRYPTO '91', LNCS 576, 1992, 279-287.
|
12 |
T. Motzkin, The Euclidean Algorithm, Bull. Amer. Math. Soc., 55 (1949), 1142-1146.
DOI
|
13 |
W. Penney, A "binary" system for complex numbers, JACM 12 (1965) 247-248.
DOI
|
14 |
A. Petho, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Walter de Gruyter Publ. Comp., Eds.: A. Petho and etals, (1991), 31-44.
|
15 |
H.M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.
DOI
|
16 |
H.J. Song and B.S. Kang, Disclike Lattice Reptiles induced by Exact Polyominos, Fractals, 7 (1999), no. 1, 9-22.
DOI
ScienceOn
|
17 |
I. Stewart, D. Tall, Algebraic Number Theory, Chapman and Hall Mathematics Series, Second Edition.
|
18 |
K.S. Williams, Note on non-Euclidean principal ideal domains, Amer. Math. Monthly , 48(1975), no. 3, 176-177.
|
19 |
Jack C. Wilson, A Principal Ring that is Not a Euclidean Ring, Math. Mag. 46 (Jan 1973), 34-38.
DOI
|