1 |
R. H. Cameron and D. A. Storvick, An analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.
DOI
|
2 |
S. J. Chang, H. S. Chung, and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals in ([0, T]), Integral Transforms Spec. Funct. 21 (2010), 143-151.
DOI
ScienceOn
|
3 |
S. J. Chang, D. Skoug and H. S. Chung, Relationships for modified generalized integral transform and modified convolution product on function space, Integral Transforms Spec. Funct. 25 (2014), 790-804.
DOI
ScienceOn
|
4 |
H. S. Chung, D. Skoug, and S. J. Chang, A Fubini theorem for integral transforms and convolution products, Int. J. Math. 24 (2013), Article ID 1350024 (13 pages).
|
5 |
K. S. Chang, B. S. Kim, and I. Yoo, Integral transforms and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), 97-105.
DOI
ScienceOn
|
6 |
L. Gross, Abstract Wiener space, Proc. Fifth Berkeley Sympos. Math. Stat. Prob. 2 (1965), 31-42.
|
7 |
M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), 291-302.
과학기술학회마을
DOI
ScienceOn
|
8 |
G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176.
DOI
|
9 |
H.-H. Kuo Gaussian Measures in Banach Spaces, Lecture Note in Mathematics, Springer, Berlin 463 (1980), 579-598.
|
10 |
B.J. Kim, B.S. Kim and D. Skoug, Integral transforms, convolution products and first variations, Int. J. Math. Math. Soc. 11 (2004), 579-598.
|
11 |
B.S. Kim and D. Skoug, Integral transforms of functionals in ([0, T]), Rocky Mountain J. Math. 33 (2003), 1379-1393.
DOI
ScienceOn
|
12 |
Y.J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces I, Trans. Amer. Math. Soc. 262 (1980), 259-283.
|
13 |
Y.J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164.
DOI
|