Browse > Article
http://dx.doi.org/10.7858/eamj.2015.014

SOME RELATIONSHIPS BETWEEN THE INTEGRAL TRANSFORM AND THE CONVOLUTION PRODUCT ON ABSTRACT WIENER SPACE  

Lee, Jeong Eun (Center of General Education, Dankook University)
Chang, Seung Jun (Department of Mathematics, Dankook University)
Publication Information
Abstract
In this paper we establish several formulas for multiple integral transform of functionals defined on abstract Wiener space. We then use the these results to establish several basic formulas involving multiple convolution products.
Keywords
Abstract Wiener space; integral transform; convolution product; Fubini theorem;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.   DOI
2 S. J. Chang, H. S. Chung, and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals in $L_2$($C_0$[0, T]), Integral Transforms Spec. Funct. 21 (2010), 143-151.   DOI   ScienceOn
3 S. J. Chang, D. Skoug and H. S. Chung, Relationships for modified generalized integral transform and modified convolution product on function space, Integral Transforms Spec. Funct. 25 (2014), 790-804.   DOI   ScienceOn
4 H. S. Chung, D. Skoug, and S. J. Chang, A Fubini theorem for integral transforms and convolution products, Int. J. Math. 24 (2013), Article ID 1350024 (13 pages).
5 K. S. Chang, B. S. Kim, and I. Yoo, Integral transforms and convolution of analytic functionals on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000), 97-105.   DOI   ScienceOn
6 L. Gross, Abstract Wiener space, Proc. Fifth Berkeley Sympos. Math. Stat. Prob. 2 (1965), 31-42.
7 M. K. Im, U. C. Ji, and Y. J. Park, Relations among the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), 291-302.   과학기술학회마을   DOI   ScienceOn
8 G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157-176.   DOI
9 H.-H. Kuo Gaussian Measures in Banach Spaces, Lecture Note in Mathematics, Springer, Berlin 463 (1980), 579-598.
10 B.J. Kim, B.S. Kim and D. Skoug, Integral transforms, convolution products and first variations, Int. J. Math. Math. Soc. 11 (2004), 579-598.
11 B.S. Kim and D. Skoug, Integral transforms of functionals in $L_2$($C_0$[0, T]), Rocky Mountain J. Math. 33 (2003), 1379-1393.   DOI   ScienceOn
12 Y.J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces I, Trans. Amer. Math. Soc. 262 (1980), 259-283.
13 Y.J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164.   DOI