Browse > Article

Culture Condition of Pseudomonas aeruginosa F722 for Biosurfactant Production  

Oh, Kyung-Taek (Department of Environmental Engineering, Chonnam National University)
Kang, Chang-Min (Department of Environmental Engineering, Chodang University)
Kubo, Motoki (Department of Bio Science and Technology, Faculty of Science and Engineering, Ritsumeikan University)
Chung, Seon-Yong (Department of Environmental Engineering, Chonnam National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.6, 2006 , pp. 471-476 More about this Journal
Abstract
Pseudomonas aeruginosa F722 produces a biosurfactant (BS) during its degradation of carbon and hydrocarbon compounds. The culture conditions for upgrading the biosurfactant productivity were investigated. The concentration of the biosurfactant produced by P. aeruginosa F722 was 0.78 g/L in C-medium; however, this increased to 1.66 g/L in BS medium, which was experimentally adjusted to optimal conditions. $NaNO_{2}$ was found to be most effective for microbial growth, with an $O.D_{600nm}$ of 1.18 for 0.1 % $NaNO_{2}$. Microbial growths, according to the $O.D_{600nm}$ were 2.53, 2.68, 2.89, and 2.87 for glucose, glycerol, $n-C_{10},\;and\;n-C_{22}$, respectively. Clear zone diameters (cm), indicating biosurfactant activity, were 9.0, 8.8, 5.7, and 8.5 for glucose, glycerol, $n-C_{10},\;and\;n-C_{22}$, respectively. Microbial growth was not consistent with the biosurfactant activity. The best biosurfactant activity was found with a C/N ratio of 20. Under optimal culture condition, the average surface tension decreased from 70 to 30 mN/m after 5 days. With aeration of 1.0 vvm, the biosurfactant produced increased to 1.94 g/L (up to 20%) compared to that of 1.66 g/L with no aeration. With aeration, the velocities of glucose degradation during both the log and stationary growth phases increased from 0.25 and $0.18\;h^{-1}$ to 0.33 and $0.29\;h^{-1}$, respectively, and the time for the culture to arrive at the maximum clear zone diameter became shorter, from 80 down to 60 h with no aeration.
Keywords
Pseudomonas aeruginosa F722; biosurfactant; surface tension; aeration; degradation velocity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Suk, W. S., E. G. Lim, H. J. Son, G. Lee, and S. J. Lee (1999) Compositional analysis and some properities of biosurfactant from Pseudomonas sp. SWI. Kor. J. Appl. Microbiol. Biotechnol. 27: 41-45
2 Providenti, M. A., C. A. Flemming, H. Lee, and J. T. Trevors (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-prducing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol. Ecol. 17: 15-26   DOI
3 Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155   DOI   ScienceOn
4 Rahman, K. S. M., I. M. Banat, J. Thahira, T. Thayumanavan, and P. Lakshmanaperumalsamy (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81: 25-32   DOI   ScienceOn
5 Angelova, B. and H. P. Schmauder (1999) Lipophilic compounds in biotechnology-interactions with cells and technological problems. J. Biotechnol. 67: 13-32   DOI   ScienceOn
6 Noordman, W. H., J. H. J. Wachter, G. J. de Boer, and D. B. Janssen (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol. 94: 195-212   DOI   ScienceOn
7 Demain, A. L. and J. E. Davies (1999) Manual of Industrial Microbiology and Biotechnology. 2nd ed., pp. 629- 714. ASM Press, Washington, DC, USA
8 Healy, M. G., C. M. Devine, and R. Murphy (1996) Microbial production of biosurfactants. Resour. Conserv. Recycl. 18: 41-57   DOI   ScienceOn
9 Matsufujifu, M., K. Nakata, and A. Yoshimoto (1997) High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Biotechnol. Lett. 19: 1213-1215   DOI   ScienceOn
10 Benincasa, M., J. Contiero, M. A. Manresa, and I. O. Moraes (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 54: 283-288   DOI   ScienceOn
11 Lang, S. and D. Wullbrandt (1999) Rhamnose lipids-- biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32   DOI
12 Bognolo, G. (1999) Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surf. A Physicochem. Eng. Asp. 152: 41-52   DOI   ScienceOn
13 Kuyukina, M. S., I. B. Ivshina, J. C. Philp, N. Christofi, S. A. Dunbar, and M. I. Ritchkova (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J. Microbiol. Methods 46: 149-156   DOI   ScienceOn
14 Leon, V. and M. Kumar (2005) Biological upgrading of heavy crude oil. Biotechnol. Bioprocess Eng. 10: 471-481   과학기술학회마을   DOI   ScienceOn
15 Kim, S. H., E. J. Lim, K. S. Choi, Y. K. Jeong, K. L. Jang, and T. H. Lee (1996) Emulsifying agent production by Acinetobacter sp. BE-254. Kor. J. Appl. Micorbiol. Biotechnol. 24: 206-212
16 Gu, M. B. and S. T. Chang (2001) Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant. Biosens. Bioelectron. 16: 667-674   DOI   ScienceOn
17 Swannell, R. P. J., K. Lee, and M. McDonagh (1996) Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60: 342-365
18 Morikawa, M., H. Daido, T. Takao, S. Murata, Y. Shimonishi, and T. Imanaka (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175: 6459-6466
19 Stelmack, P. L., M. R. Gray, and M. A. Pickard (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl. Environ. Microbiol. 65: 163-168
20 Oh, K. T., G. H. Park, J. I. Lee, J. K. Lee, S. J. Kim, M. Kubo, and S. Y. Chung (2002) Biodegradation of crude oil and petroleum products by crude oil-degrading microorganism. Kor. J. Biotechnol. Bioeng. 17: 247-254   과학기술학회마을
21 Mulligan, C. N., R. N. Yong, and B. F. Gibbs (2001) Heavy metal removal from sediments by biosurfactants. J. Hazard. Mater. 85: 111-125   DOI   ScienceOn
22 Holden, P. A., M. G. LaMontagne, A. K. Bruce, W. G. Miller, and S. E. Lindow (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl. Environ. Microbiol. 68: 2509-2518   DOI
23 Van Hamme, J. D. and O. P. Ward (2001) Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 67: 4874-4879   DOI
24 Oh, K. T., Y. W. Lee, M. Kubo, S. J. Kim, and S. Y. Chung (2000) Isolation, identification and characterization of bacteria degrading crude oil. J. Kor. Soc. Environ. Eng. 22: 1851-1859
25 Guerra-Santos, L., O. Kappeli, and A. Fiechter (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ.Microbiol. 48: 301-305
26 Kim, P. and J. H. Kim (2005) Characterization of a novel lipopolysaccharide biosurfactant from Klebsiella oxitoca. Biotechnol. Bioprocess Eng. 10: 494-499   과학기술학회마을   DOI   ScienceOn
27 Atlas, R. M. and C. E. Cerniglia (1995) Bioremediation of petroleum pollutants diversity and environmental aspects of hydrocarbon biodegradation. Bioscience 45: 332-338   DOI   ScienceOn
28 Oerther, D. B., J. Pernthaler, A. Schramm, R. Amann, and L. Raskin (2000) Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl. Environ. Microbiol. 66: 2154-2165   DOI
29 Garti, N. (1998) What can nature offer from an emulsifier point of view: trends and progress? Colloids Surf. A Physicochem. Eng. Asp. 152: 125-146   DOI   ScienceOn
30 Desai, J. D. and I. M. Banat (1997) Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64