Browse > Article

Enzymatic Release of Ferulic Acid from Ipomoea batatas L. (Sweet Potato) Stem  

Min, Ji-Yun (Division of Environmental Forest Science, Gyeongsang National University)
Kang, Seung-Mi (Division of Forest Research, Gyeongsangnam-do Forest Environment Research Institute)
Park, Dong-Jin (Division of Environmental Forest Science, Gyeongsang National University)
Kim, Yong-Duck (Division of Environmental Forest Science, Gyeongsang National University)
Jung, Ha-Na (Division of Environmental Forest Science, Gyeongsang National University)
Yang, Jae-Kyung (Division of Environmental Forest Science, Gyeongsang National University)
Seo, Won-Teak (Department of Food Science, Jinju National University)
Kim, Seon-Won (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Karigar, Chandrakant S. (Department of Biochemicstry, Bangalore University)
Choi, Myung-Suk (Division of Environmental Forest Science, Gyeongsang National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.4, 2006 , pp. 372-376 More about this Journal
Abstract
Ferulic acid is a phenolic compound that serves as a major biosynthetic precursor of vanillin in higher plants. We investigated the ability of the 3 commercial enzymes - Ultraflo L, Viscozyme L, and ${\alpha}-Amylase$ - to induce the release ferulic acid from the Ipomoea batatas L. (sweet potato) stem. The rate of release for ferulic acid was optimal when Ultraflo L (1.0%) was used compared with the other enzymes, whereas Viscozyme L was most effective for the release of vanillic acid and vanillin. Thus, these enzymes may be useful for the large-scale production of ferulic acid and other phenolic compounds from sweet potato stem.
Keywords
ferulic acid; enzymatic treatment; sweet potato;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Graf, E. (1992) Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13: 435-448   DOI   ScienceOn
2 Smith, M. M. and R. D. Hartley (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysacchatides in graminaceous plants. Carbohydr. Res. 118: 65-80   DOI   ScienceOn
3 Friedman, M. and H. S. Jurgens (2000) Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 48: 2101-2110   DOI   ScienceOn
4 Mathew, S. and T. E. Abraham (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24: 59-83   DOI   ScienceOn
5 Couteau, D. and P. Mathaly (1997) Purification of ferulic acid by adsorption after enzymic release from a sugar-beet pulp extract. Ind. Crop. Prod. 6: 237-252   DOI   ScienceOn
6 Barghini, P., F. Montebove, M. Ruzzi, and A. Schiesser (1998) Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl. Microbiol. Biotechnol. 49: 309-314   DOI
7 Kang, S. M., H. Y. Jung, Y. M. Kang, J. Y. Min, C. S. Karigar, J. K. Yang, S. W. Kim, Y. R. Ha, S. H. Lee, and M. S. Choi (2005) Biotransformation and impact of ferulic acid on phenylpropanoid and capsaicin levels in Capsicum annuum L. cv. P1482 cell suspension cultures. J. Agric. Food Chem. 53: 3449-3453   DOI   ScienceOn
8 Tran, L. H., M. Yogo, H. Ojima, O. Idota, K. Kawai, T. Suzuki, and K. Takamizawa (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol. Bioprocess Eng. 9: 223-228   DOI   ScienceOn
9 Yoon, S.-H., C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.- S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, and S.-W. Kim (2005) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol. Bioprocess Eng. 10: 378-384   과학기술학회마을   DOI   ScienceOn
10 Bartolome, B. and C. Gomez-Cordoves (1999) Barley spent grain: release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. J. Sci. Food Agric. 79: 435-439   DOI   ScienceOn
11 Heinonen, M., D. Rein, M. T. Satue-Gracia, S. W. Huang, J. B. German, and E. N. Frankel (1998) Effect of protein on the antioxidant activity of phenolics compounds in a lecithin-liposome oxidation system. J. Agric. Food Chem. 46: 917-922   DOI   ScienceOn
12 Kato, A., J. I. Azuma, and T. Koshijima (1983) A new feruloylated trisaccharide from bagasse. Chem. Lett. 12: 137-140   DOI
13 Cheetham, P. (1993) The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol. 11: 478-488   DOI   ScienceOn
14 Sakai, S., H. Kawamata, T. Kogure, N. Mantani, K. Terasawa, M. Umatake, and H. Ochiai (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediat. Inflamm. 8: 173-175   DOI   ScienceOn
15 Micard, V., C. M. G. C. Renard, and J.-F. Thibault (1994) Studies on enzymic release of ferulic acid from sugar-beet pulp. Lebensm. Wiss. Technol. 27: 59-66   DOI   ScienceOn
16 Bartolome, B., C. B. Faulds, M. Tuohy, G. P. Hazlewood, H. J. Gilbert, and G. Williamson (1995) Influence of different xylanases on the activity of ferulic acid esterases on wheat bran. Biotechnol. Appl. Biochem. 22: 65-73
17 Faulds, C. B., G. Mandalari, R. LoCurto, G. Bisignano, and K. W. Waldron (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer's grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl. Microbiol. Biotechnol. 64: 644-650   DOI   ScienceOn
18 Faulds, C. B., A. I. Sancho, and B. Bartolome (2002) Mono- and dimeric ferulic acid release from brewer's spent grain by fungal feruloyl esterases. Appl. Microbiol. Biotechnol. 60: 489-494   DOI   ScienceOn
19 Kroon, P. A. and G. Williamson (1996) Release of ferulic acid from sugar beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol. Appl. Biochem. 23: 263-267
20 Goodner, K. L., P. Jella, and R. L. Rouseff (2000) Determination of vanillin in orange, grapefruit, tangerine, lemon, and lime juices using GC-olfactometry and GCMS/MS. J. Agric. Food Chem. 48: 2882-2886   DOI   ScienceOn
21 Sorensen, H. R., A. S. Meyer, and S. Pedersen (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-L-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol. Bioeng. 81: 726-731   DOI   ScienceOn
22 Sun, R.-C., X.-F. Sun, and S.-H. Zhang (2001) Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 49: 5122-5129   DOI   ScienceOn
23 Ou, S. and K.-C. Kwok (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 84: 1261-1269   DOI   ScienceOn
24 Bartolome, B., C. B. Faulds, and G. Williamson (1997) Enzymic release of ferulic acid from barley spent grain. J. Cereal Sci. 25: 285-288   DOI   ScienceOn
25 Rosazza, J. (1995) Biocatalysis, microbiology and chemistry: the power of positive linking. ASM News. 61: 241-245