Browse > Article

Asymmetric Sythesis of Unnatural L-Amino Acids Using Thermophilic Aromatic L-Amino Acid Transaminase  

Cho, Byung-Kwan (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Seo, Joo-Hyun (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Kim, Ju-Han (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.4, 2006 , pp. 299-305 More about this Journal
Abstract
Aromatic L-amino acid transaminase is an enzyme that is able to transfer the amino group from L-glutamate to unnatural aromatic ${\alpha}-keto$ acids to generate ${\alpha}-ketoglutarate$ and unnatural aromatic L-amino acids, respectively. Enrichment culture was used to isolate thermophilic Bacillus sp. T30 expressing this enzyme for use in the synthesis of unnatural L-amino acids. The asymmetric syntheses of L-homophenylalanine and L-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, using L-glutamate as an amino donor at $60^{\circ}C$. Synthesized L-homophenylalanine and L-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the ${\alpha}-keto$ acid substrates is dependent on temperature, the solubility of the unnatural L-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.
Keywords
hermophilic enzyme; transaminase; unnatural amino acids; asymmetric synthesis; equilibrium-shift; enrichment culture;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Park, H. G., J. H. Do, and H. N. Chang (2003) Regioselective enzymatic acylation of multi-hydroxyl compounds in organic synthesis. Biotechnol. Bioprocess Eng. 8: 1-8   DOI   ScienceOn
2 Ager, D. J., I. G. Fotheringham, S. A. Laneman, D. P. Pantaleone, and P. P. Taylor (1997) The large scale synthesis of unnatural amino acids. Chim. Oggi. 15: 11-14
3 Asano, Y., A. Yamada, Y. Kato, K. Yamaguchi, Y. Hibino, K. Hirai, and K. Kondo (1990) Enantioselective synthesis of (S)-amino acids by phenylalanine dehydrogenase from Bacillus sphaericus: use of natural and recombinant enzymes. J. Org. Chem. 55: 5567-5571   DOI
4 Syldatk, C., D. Volkel, U. Bilitewski, K. Krohn, H. Hoke, and F. Wagner (1992) Biotechnological production of unnatural L-amino acids from D,L-5-monosubstituted hydantions. II. L-$\alpha$- and L-$\beta$-naphthylalanine. Biotechnol. Lett. 14: 105-110   DOI
5 Cho, B. K., J. H. Seo, T. W. Kang, and B. G. Kim (2003) Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase. Biotechnol. Bioeng. 83: 226-234   DOI   ScienceOn
6 Schulz, A., P. Taggeselle, D. Tripier, and K. Bartsch (1990) Stereospecific production of the herbicide phophinothricin (glufosinate) by transamination: isolation and characterization of a phosphinothricin-specific transaminase from Escherichia coli. Appl. Environ. Microbiol. 56: 1-6
7 Shin, J.-S. and B.-G. Kim (2002) Exploring the active site of amine: pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: How the enzyme controls substrate specificity and stereoselectivity. J. Org. Chem. 67: 2848-2853   DOI   ScienceOn
8 Peisach, D., D. M. Chipman, P. W. Van Ophem, J. M. Manning, and D. Ringe (1998) Crystallographic study of steps along the reaction pathway of D-amino acid aminotransferase. Biochemistry 37: 4958-4967   DOI   ScienceOn
9 Zale, S. E. and A. M. Klibanov (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnol. Bioeng. 25: 2221-2230   DOI   ScienceOn
10 Yang, Y. J., C. H. Lee, and Y. M. Koo (2004) Separation of amino acids by simulated moving bed using competitive Langmuir isotherm. Biotechnol. Bioprocess Eng. 9: 331- 338   DOI   ScienceOn
11 Meiwes, J., M. Schudok, and G. Kretzschmar (1997) Asymmetric synthesis of L-thienylalanines. Tetrahedron Asym. 8: 827-836
12 Cooper, A. J. L., J. Z. Ginos, and A. Meister (1983) Synthesis and properties of the $\beta$-keto acids. Chem. Rev. 83: 321-358   DOI
13 Fotheringham, I. G., N. Grinter, D. P. Pantaleone, R. F. Senkpeil, and P. P. Taylor (1999) Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K-12. Bioorg. Med. Chem. 7: 2209-2213   DOI   ScienceOn
14 Cho, B.-K., H. J. Cho, S.-H. Park, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions. Biotechnol. Bioeng. 81: 783-789   DOI   ScienceOn
15 Chao, Y. P., Z. J. Lai, P. Chen, and J. T. Chern (1999) Enhanced conversion rate of L-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotechnol. Prog. 15: 453-458   DOI   ScienceOn
16 Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418   DOI   ScienceOn
17 Cho, B.-K., H. J. Cho, H. Yun, and B.-G. Kim (2003) Simultaneous synthesis of enantiomerically pure (S)- amino acids and (R)-amines using $\alpha$/$\beta$-aminotransferase coupling reactions with two-liquid phase reaction system. J. Mol. Catal., B Enzym. 26: 273-285   DOI   ScienceOn
18 Twomey, C. M. and S. Doonan (1997) A comparative study of the thermal inactivation of cytosol and mitochondrial aspartate aminotransferase. Biochim. Biophys. Acta 1342: 37-44
19 Lesson, P. A., X. Rabasseda, and J. Castaner (1997) FK-888. Drugs Future 22: 353-358
20 Lo, H.-H., S.-K. Hsu, W.-D. Lin, N.-L. Chan, and W.-H. Hsu (2005) Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase. Biotechnol. Prog. 21: 411-415   DOI   ScienceOn
21 Stewart, J. D. (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr. Opin. Chem. Biol. 5: 120-129   DOI   ScienceOn
22 Cho, B.-K., H.-Y. Park, J.-H. Seo, K. Kinnera, B.-S. Lee, and B.-G. Kim (2004) Enzymatic resolution for the preparation of enantiomerically enriched D-$\beta$-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase. Biotechnol. Bioeng. 88: 512-519   DOI   ScienceOn
23 Krapcho, J., C. Turk, D. W. Cushman, J. R. Powell, J. M. Deforrest, E. R. Spitzmiller, D. S. Karanewsky, M. Duggan, G. Rovansak, J. Schwartz, S. Natarajan, J. D. Godfrey, D. E. Ryono, R. Neubeck, K. S. Atwal, and E. W. Petrillo (1988) Angiotensin-converting enzyme inhibitors. Mercaptan, carboxyalkyl dipeptide, and phosphinic acid inhibitors incorporating 4-substituted prolines. J. Med. Chem. 31: 1148-1160   DOI
24 Xu, Q., G. Wang, X. Wang, T. Wu, X. Pan, A. S. C. Chan, and T. K. Yang (2000) The synthesis of L-(+)-homophenylalanine hydrochloride. Tetrahedron Asym. 11: 2309-2314   DOI   ScienceOn
25 Ahn, J., J. Ryu, H. Jang, and J.-K. Jung (2004) Effect of growth rate on the production of L-proline in the fed-batch culture of Corynebacterium acetoacidophilum. Biotechnol. Bioprocess Eng. 9: 326-329   DOI   ScienceOn