Browse > Article

Protein Adsorption on Ion Exchange Resin: Estimation of Equilibrium Isotherm Parameters from Batch Kinetic Data  

Chu K.H. (Department of Chemical and Process Engineering, University of Canterbury)
Hashim M.A. (Department of Chemical Engineering, University of Malaya)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.1, 2006 , pp. 61-66 More about this Journal
Abstract
The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm - the saturation capacity, or $q_m$, and the dissociation constant, $K_d$ - are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimating $q_m$ and $K_d$ for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters ($q_m,\;K_d$, and a rate constant), was fitted to a single kinetic profile. The value of $q_m$ determined as the result of this approach was quantitatively consistent with the $q_m$ value derived from the traditional batch equilibrium data. However, the $K_d$ value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.
Keywords
adsorption equilibrium; batch kinetics; Langmuir isotherm; parameter estimation; protein;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Lyddiatt, A. (2002) Process chromatography: current constraints and future options for the adsorptive recovery of bioproducts. Curr. Opin. Biotechnol. 13: 95-103   DOI   ScienceOn
2 Zhou, X., B. Xue, S. Bai, and Y. Sun (2002) Macroporous polymeric ion-exchanger of high capacity for protein adsorption. Biochem. Eng. J. 11: 13-17   DOI   ScienceOn
3 Yao, S. J., Y. X. Guan, and L. H. Yu (2003) Adsorption performance of proteins to CM Sepharose FF and DEAE Sepharose FF adsorbents. Kor. J. Chem. Eng. 20: 93-98   DOI
4 Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40: 1361-1403   DOI
5 Beck, J. V. and K. J. Arnold (1977) Parameter Estimation in Engineering and Science. Wiley, New York, USA
6 Smith, W. R. and R. W. Missen (2003) Sensitivity analysis in ChE education: Part 1. Introduction and application to explicit models. Chem. Eng. Educ. 37: 222-227
7 Conder, J. R. and B. O. Hayek (2000) Adsorption kinetics and equilibria of bovine serum albumin on rigid ionexchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem. Eng. J. 6: 215-223   DOI   ScienceOn
8 Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2005) Comparison of chromatographic ion-exchange resins. IV. Strong and weak cation-exchange resins and heparin resins. J. Chromatogr. A 1069: 65-77   DOI   ScienceOn
9 Chang, C. and A. M. Lenhoff (1998) Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. J. Chromatogr. A 827: 281- 293   DOI   ScienceOn
10 Habbaba, M. M. and K. O. Ulgen (1997) Analysis of protein adsorption to ion exchangers in a finite bath. J. Chem. Technol. Biotechnol. 69: 405-414   DOI   ScienceOn
11 Horstmann, B. J., C. N. Kenney, and H. A. Chase (1986) Adsorption of proteins on Sepharose affinity adsorbents of varying particle size. J. Chromatogr. 361: 179-190   DOI   ScienceOn
12 Bosma, J. C. and J. A. Wesselingh (2004) Available area isotherm. AIChE J. 50: 848-853   DOI   ScienceOn
13 Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2004) Comparison of chromatographic ionexchange resins. III. Strong cation-exchange resins. J. Chromatogr. A 1034: 85-97   DOI   ScienceOn
14 de Vasconcellos, J. F. V., A. J. Silva Neto, C. C. Santana, and F. J. C. P. Soeiro (2002) Parameter estimation in solid-liquid adsorption with a stochastic global optimization method. Proceedings of the 4th International Conference on Inverse Problems in Engineering. May 26-31. Rio de Janeiro, Brazil
15 Whitley, R. D., J. M. Brown, N. P. Karajgikar, and N.-H. L. Wang (1989) Determination of ion exchange equilibrium parameters of amino acid and protein systems by an impulse response technique. J. Chromatogr. 483: 263-287   DOI   ScienceOn
16 Lesins, V. and E. Ruckenstein (1988) Patch controlled attractive electrostatic interactions between similarly charged proteins and adsorbents. Colloid Polym. Sci. 266: 1187-1190   DOI
17 Shen, H. and D. D. Frey (2005) Effect of charge regulation on steric mass-action equilibrium for the ionexchange adsorption of proteins. J. Chromatogr. A 1079: 92-104   DOI   ScienceOn
18 Wright, P. R., F. J. Muzzio, and B. J. Glasser (1998) Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption. Biotechnol. Prog. 14: 913-921   DOI   ScienceOn
19 Staby, A., I. H. Jensen, and I. Mollerup (2000) Comparison of chromatographic ion-exchange resins. I. Strong anion exchange resins. J. Chromatogr. A 897: 99-111   DOI   ScienceOn
20 Staby, A. and I. H. Jensen (2001) Comparison of chromatographic ion-exchange resins. II. More strong anion exchange resins. J. Chromatogr. A 908: 149-161   DOI   ScienceOn
21 DePhillips, P. and A. M. Lenhoff (2001) Determinants of protein retention characteristics on cation-exchange adsorbents. J. Chromatogr. A 933: 57-72   DOI   ScienceOn