Browse > Article

Cloning and Sequencing of a Novel Glutaryl Acylase ${\beta}-Subunit$ Gene of Pseudomonas cepacia BY21 from Bioinformatics  

Jeong, Yoo-Seok (Department of Biotechnology, Yeungnam University)
Yoo, Hyo-Jin (Department of Applied Microbiology, Yeungnam University)
Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
Nam, Doo-Hyun (Department of Pharmacy, Yeungnam University)
Khang, Yong-Ho (Department of Applied Microbiology, Yeungnam University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.6, 2005 , pp. 510-515 More about this Journal
Abstract
Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from various Pseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences of Pseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene from P. cepacia BY21. The unknown -subunit gene of glutaryl acylase from chromosomal DNA of P. cepacia BY21 was cloned successfully by PCR. The -subunit amino acids of P. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those of Pseudomonas diminuta KAC-1 acylase except that Asn408 of P. diuminuta KAC-1 acylase was changed to Leu408.
Keywords
7-ACA; cephalosporin acylase; cephalosporin C; glutaryl acylase; DNA sequencing;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Lee, Y. S., H. W. Kim, K. B. Lee, and S. S. Park (2000) Involvement of arginine and tryptophan residues in catalytic activity of glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. Biochim. Biophys. Acta 1523: 123-127   DOI   ScienceOn
2 and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Lett. 26: 939-945   DOI   ScienceOn
3 Oh, B., M. Kim, J. Yoon, K. Chung, Y. Shin, D. Lee, and Y. Kim (2003) Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the sidechain conformations of active-site residues. Biochem. Biophys. Res. Commun. 310: 19-27   DOI   ScienceOn
4 Kim, J. H., J. S. Lim, and S. W. kim (2004) The improvement of cephalosporin C production by fed-batch cluture of Cephalosporium acremonium 25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464   DOI   ScienceOn
5 Mao, X., W. Wang, W. Jiang, and G. P. Zhao (2004) His23beta and Glu455beta of the Pseudomonas sp. 130 glutaryl-7-aminocephalosporanic acid acylase are crucially important for efficient autoproteolysis and enzymatic catalysis. Protein J. 23: 197-204   DOI   ScienceOn
6 Kim, O.-T., M.-Y. Kim, S.-J. Hwang, J.-C. Ahn, and B. Hwang (2005) Cloning and molecular analysis of cDNA encoding cycloartenol synthase from Centella asiatica (L.) urban. Biotechnol. Bioprocess Eng. 10: 16-22   DOI   ScienceOn
7 Lee, Y. H., T. S. Chang, H. J. Liu, and W. S. Chu (1998) An acidic glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas nitroreducens. Biotechnol. Appl. Biochem. 28: 113-118
8 Khang, Y.-H., I.-W. Kim, Y.-R. Hah, J.-H. Hwangbo, and K.-K. Kang (2003) Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Biotechnol. Bioeng. 82: 480-488   DOI   ScienceOn
9 Franzosi, G., E. Battistel, I. Gagliardi, W. van der Goes (1995) Screening and characterization of microorganisms with glutaryl-7ADCA acylase activity. Appl. Microbiol. Biotechnol. 43: 508-513   DOI   ScienceOn
10 Kim, J. K., I. S. Yang, S. Rhee, Z. Dauter, Y. S. Lee, S. S. Park, and K. H. Kim (2003) Crystal structures of glutaryl 7-aminocephalosporanic acid acylase: insight into autoproteolytic activation. Biochemistry 42: 4084-4093   DOI   ScienceOn
11 Otten, L. G., C. F. Sio, A. M. van der Sloot, R. H. Cool, and W. J. Quax (2004) Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 5: 820-825   DOI   ScienceOn
12 Khang, Y.-H. and B.-H. Yoo (2000) Isolation and characterization of a novel soil strain, Pseudomonas cepacia BY21, with glutaryl-7-aminocephalosporanic acid acylase activity. Biotechnol. Lett. 22: 317-320   DOI   ScienceOn
13 Lee, Y. S. and S. S. Park (1998) Two-step autocatalytic processing of the glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. J. Bacteriol. 180: 4576-4582
14 Aramori, I., M. Fukagawa, M. Tsumura, M. Iwami, H. Ono, H. Kojo, M. Kohsaka, Y. Ueda, and H. Imanaka (1991) Cloning and nucleotide sequencing of a novel 7$\beta$ - (4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J. Bacteriol. 173: 7848-7855   DOI
15 Kim, Y., K.-H. Yoon, Y.-H. Khang, S. Turley, and W. G. Hol (2000) The 2.0 $\AA$ crystal strucutre of cephalosporin acylase. Structure 8: 1059-1068   DOI   ScienceOn
16 Gal, S. W., S. W. Lee, and Y. J. Choi (2002) Molecular cloning and characterization of 58 kDa chitinase gene from Serratia marcescens KCTC 2172. Biotechnol. Bioprocess Eng. 7: 38-42   DOI   ScienceOn
17 Otten, L. G., C. F. Sio, J. Vrielink, R. H. Cool, and W. J. Quax (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the Beta-subunit. J. Biol. Chem. 277: 42121-42127   DOI   ScienceOn
18 Shewale, J. G., K. K. Kumar, and G. R. Ambekar (1987) Evaluation of determination of 6-aminopenicillanic acid by p-dimethylaminobenzaldehyde. Biotechnol. Tech. 1: 69-72   DOI
19 Li, Y., J. Chen, W. Jiang, X. Mao, G. Zhao, and E. Wang (1999) In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur. J. Biochem. 262: 713-719   DOI   ScienceOn
20 Sio, C. F., A. M. Riemens, J. van der Laan, R. M. D. Verhaert, and W. J. Quax (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur. J. Biochem. 269: 4495-4504   DOI   ScienceOn
21 Fritz-Wolf, K., K. P. Koller, G. Lange, A. Liesum, K. Sauber, H. Schreuder, W. Aretz, and W. Kabsch (2002) Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7- aminocephalosporanic acid from cephalosporin C. Protein Sci. 11: 92-103   DOI   ScienceOn