Browse > Article

Influences of Cultural Medium Component on the Production of Poly($\gamma$-glutamic acid) by Bacillus sp. RKY3  

Jung Duk-Yeon (Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Jung Sunok (BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yun Jong-Sun (BioHelix)
Kim Jin-Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Wee Young-Jung (Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Jang Hong-Gi (Korean Institute of Natural Science Inc.)
Ryu Hwa-Won (School of Biological Sciences and Technology, Chonnam National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.4, 2005 , pp. 289-295 More about this Journal
Abstract
In this study, the cultural medium used for the efficient production of $\gamma$-PGA with a newly isolated Bacillus sp. RKY3 was optimized. It was necessary to supplement the culture medium with L-glutamic acid and an additional carbon source in order to induce the effective production of $\gamma$-PGA. The amount of $\gamma$-PGA increased with the addition of L-glutamic acid to the medium. The addition of 90 g/L L-glutamic acid to the medium resulted in the maximal yield of $\gamma$-PGA (83.2 g/L). The optimum nitrogen source was determined to be peptone, but corn steep liquor, a cheap nutrient, was also found to be effective for $\gamma$-PGA production. Both the $\gamma$-PGA production and cell growth increased rapidly with the addition of small amounts of $K_2HPO_4$ and $MgSO_4\cdot7H_{2}O$. Bacillus sp. RKY3 appears to require $Mg^{2+}$, rather than $Mn^{2+}$, for $\gamma$-PGA production, which is distinct from the production protocols associated with other, previously reported bacteria. Bacillus sp. RKY3 may also have contributed some minor $\gamma$-PGA depolymerase activity, resulting in the reduction of the molecular weight of the produced $\gamma$-PGA at the end of fermentation.
Keywords
Bacillus; biodegradable polymer; culture medium; glutamic acid;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Kunioka, M. (1995) Biosynthesis of poly(($\gamma$-glutamic acid) from L-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO 3335. Appl. Microbiol. Biotechnol. 44: 501-506   DOI   ScienceOn
2 Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada (1996) Glutamic acid independent production of poly($\gamma$-glutamic acid) by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60: 1239-1242   DOI   ScienceOn
3 Ryu, H. W., J. S. Yun, D. Y. Jung, and S. Jung (2004) Manufacturing process of poly-glutamic acid using a newly isolated Bacillus sp. RKY3 KCTC 10412BP. Korea Patent application no. 10-2004-0027859
4 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
5 Birrer, G. A., A. M. Cromwick, and R. A. Gross (1994) $\gamma$- Poly(glutamic acid) formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int. J. Biol. Macromol. 16: 265-275   DOI   ScienceOn
6 Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J. Bacteriol. 76: 499-503
7 Ashiuchi, M., T. Kamei, and H. Misono (2003) Poly-$\gamma$- glutamate synthase of Bacillus subtilis. J. Mol. Cat. B 23: 101-106   DOI   ScienceOn
8 Shih, I. L. and Y. T Van (2001) The production of poly- ($\gamma$-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 79: 207-225   DOI   ScienceOn
9 Leonard, C. G., R. D. Housewright, and C. B. Thorne (1958) Effect of metal ions on the optical specificity of glutamine synthetase and glutamyl transferase of Bacillus licheniformis. Biochem. Biophys. Acta 62: 432-434   DOI   ScienceOn
10 Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid. Biotechnol. Bioprocess Eng. 9: 303-308   DOI   ScienceOn
11 Cheng, C., Y. Asada, and T. Aaida (1989) Production of $\gamma$- polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric. Biol. Chem. 53: 2369-2375   DOI
12 Xu, H., M. Jiang, H. Li, D. Lu, and P. Quyang (2005) Efficient production of poly($\gamma$-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem. 40: 519-523   DOI   ScienceOn
13 Shih, I. L., Y. T. Van, and Y. N Chang (2002) Application of statistical experimental methods to optimize production of poly($\gamma$-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb. Technol. 31: 213-220   DOI   ScienceOn
14 Goto, A. and M. Kunioka (1992) Biosynthesis and hydrolysis of poly($\gamma$glutamic acid) from Bacillus subtilis IFO 3335. Biosci. Biotechnol. Biochem. 56: 1031-1035   DOI
15 Troy, F. A. (1973) Chemistry and biosynthesis of the poly($\gamma$-D-glutamyl) capsule in Bacillus licheniformis. 1. Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem. 248: 305-316
16 Park, J. K., S. H. Hyun, and J. Y. Jung (2004) Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioprocess Eng. 9: 383-388   DOI   ScienceOn
17 Kada, S., H. Nanamiya, F. Kawamura, and S. Horinouchi (2004) Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-$\gamma$-glutamate production in $\gamma$-PGA-producing Bacillus subtilis. FEMS Microbiol. Lett. 236: 13-20   DOI
18 Cromwick, A. M and R. A. Gross (1994) Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and $\gamma$-poly(glutamic acid) formation. Int. J. Biol. Macromol. 17: 259-267   DOI   ScienceOn
19 Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprocess Eng. 9: 196-200   DOI   ScienceOn
20 Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka, and M. Tanguchi (1993) Production of poly($\gamma$-glutamic acid) by Bacillus subtilis F-2-01. Biosci. Biotechnol. Biochem. 57: 1212-1213   DOI
21 Kunioka, M. and A. Goto (1994) Biosynthesis of poly($\gamma$- glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO 3335. Appl. Microbiol. Biotechnol. 40: 867-872   DOI   ScienceOn
22 Shih, I. L., Y. T. Van, L. C. Yeh, H. G. Lin, and Y. N. Chang (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 78: 267-272   DOI   ScienceOn