Browse > Article

Recovery of Trichloroethylene Removal Efficiency through Short-term Toluene Feeding in a Biofilter Enriched with Pseudomonas putida F1  

Jung In-Gyung (Industrial Liaison Research Institute, Kyung Hee University)
Park Ok-Hyun (Department of Environment Engineering, Busan National University)
Woo Hae-Jin (Department of Environment Engineering, Busan National University)
Park Chang-Ho (Industrial Liaison Research Institute, Kyung Hee University, Department of Chemical Engineering, Kyung Hee University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.1, 2005 , pp. 34-39 More about this Journal
Abstract
Trichloroethylene (TCE) is an environmental contaminant provoking genetic mutation and damages to liver and central nerve system even at low concentrations. A practical scheme is reported using toluene as a primary substrate to revitalize the biofilter column for an extended period of TCE degradation. The rate of trichloroethylene (TCE) degradation by Pseudomonas putida F1 at $25^{\circ}C$ decreased exponentially with time, without toluene feeding to a biofilter column ($11\;cm\;I.D.{\times}95\;cm$ height). The rate of decrease was 2.5 times faster at a TCE concentration of $970\;{\mu}g/L$ compared to a TCE concentration of $110\;{\mu}g/L$. The TCE itself was not toxic to the cells, but the metabolic intermediates of the TCE degradation were apparently responsible for the decrease in the TCE degradation rate. A short-term (2 h) supply of toluene ($2,200\;{\mu}g/L$) at an empty bed residence time (EBRT) of 6.4 min recovered the relative column activity by $43\%$ when the TCE removal efficiency at the time of toluene feeding was $58\%$. The recovery of the TCE removal efficiency increased at higher incoming toluene concentrations and longer toluene supply durations according to the Monod type of kinetic expressions. A longer duration ($1.4{\sim}2.4$ times) of toluene supply increased the recovery of the TCE removal efficiency by $20\%$ for the same toluene load.
Keywords
trichloroethylene; toluene feeding; intermediates; recovery; Pseudomonas putida F1; toluene load;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Oldenhuis, R., J. Y. Odedzes, J. J. Waarde, and D. B. Janssen (1991) Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichlorosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7-14
2 Nakamura, Y., M. Daidai, and F. Kobayashi (2004) Bioremediation of phenolic compounds having endocrinedisrupting activity using ozone oxidation and activated sludge treatment. Biotechnol. Bioprocess Eng. 9: 151-155   DOI   ScienceOn
3 Kleopfer, R. D., D. M. Easley, B. B. Hass, Jr. T. G. Deihl, D. E. Jackson, and F. P. Guengerich (1985) Anaerobic degradation of trichloroethylene in soil. Environ. Sci. Technol. 19: 277-280   DOI   ScienceOn
4 Arciero, D., T. Vannelli, M. Logan, and A. B. Hooper (1989) Degradation of trichloroethylene by the ammoniaoxidizing bacterium Nitrosomonas europaea. Biochem. Bioph. Res. Co. 159: 640-643   DOI   ScienceOn
5 Chang, H. L. and L. Alvarez-Cohen (1997) Two stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res. 31: 2026-2036   DOI   ScienceOn
6 Sukesan, S. and M. E. Watwood (1997) Continuous vapor- phase trichloroethylene biofiltration using hydrocarbon- enriched compost as filtration matrix. Appl. Microbiol. Biotechnol. 48: 671-676   DOI   ScienceOn
7 Wackett, L. P. and D. Gibson (1988) Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida F1. Appl. Environ. Microbiol. 54; 1703-1708
8 Wackett, L. P. and S. R. Householder (1989) Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723-2725
9 Li, S. and L. P. Wackett (1992). Trichloroethylene oxidation by toluene dioxygenase. Biochem. Bioph. Res. Co. 185: 443-451   DOI   ScienceOn
10 Stainer, R. Y., N. J. Palleroni, and M. Doudoroff (1966) The aerobic Pseoudomonas: a taxonomic study. J. Gen. Appl. Microbiol. 43: 159-171   DOI   ScienceOn
11 Ely, R. L., M. R. Hyman, D. J. Arp, R. B. Guenther, and K. J. Williamson (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: II. Trichloroethylene degradation experiments. Biotechnol. Bioeng. 46: 232-245   DOI   ScienceOn
12 Vogel, T. M. and P. McCarty (1986) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080-1083
13 Dolasa, A. R. and S. J. Ergas (1999) Membrane bioreactor for cometabolism of trichloroethene air emissions. J. Environ. Eng.-ASCE. 126: 969-973   DOI   ScienceOn
14 Zhang, X. H. and R. K. Bajpai (2000) A comprehensive model for the cometabolism of chlorinated solvents. J. Environ. Sci. Health. A35: 229-244   DOI   ScienceOn
15 Ely, R. L., K. J. Williamson, R. B. Guenther, M. R. Hyman, and D. J. Arp (1995) A cometabolic kinetics model incorporation enzyme inhibition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol. Bioeng. 46: 218-231   DOI   ScienceOn
16 Lackey, L. W., J. R. Gamble, and J. L. Boles (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams. Adv. in Environ. Res. 7: 97-104   DOI   ScienceOn
17 Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp (1995) Inhibition, inactivation, and recovery of ammonia-oxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61: 1480-1487
18 Kim, J.-H., W.-H. Jeong, T. B. Karegoudar, and C.-K. Kim (2002) Stable degradation of benzoate by Klebsiella oxytoca C302 immobilized in alginate and polyurethane. Biotechnol. Bioprocess Eng. 7: 347-351   DOI   ScienceOn
19 Lenore, S. C., E. G. Arnold, and D. E. Andrew (1998) Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association Press, Washington DC, USA
20 Cox, C. D., H. J. Woo, and K. G. Robinson (1998) Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol. 37: 97-104   DOI   ScienceOn
21 Speital, G. E. Jr. and D. S. McLay (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents. J. Environ. Eng.-ASCE. 119: 658-678   DOI   ScienceOn
22 Pressman, J. G., G. Georgiou, and G. E. Speital (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow fiber membrane bioreactor. Biotechnol. Bioeng. 62: 681-692   DOI   ScienceOn