Browse > Article

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters  

Stefanita Carmen Gabriela (University of Alberta, Department of Electrical and Computer Engineering Edmonton)
Shao Yun Feng (University of Alberta, Department of Electrical and Computer Engineering Edmonton)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.9, no.6, 2004 , pp. 428-434 More about this Journal
Abstract
Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.
Keywords
interference filter; light scattering; microfluidic toolkit; spectral method;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Vo-Dinh, T., B. M. Cullum, and D. L. Stokes (2001) Nanosensors and biochips: Frontiers in biomolecular diagnostics. Sens. Actuat. B. Chem. 74: 2-11   DOI   ScienceOn
2 Mourant, J. R., J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson (1998) Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37: 3586-3593   DOI   PUBMED
3 Backman, V, V Gopal, M. Kalashnikov, K. Badizadegan, R. Gunar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. Feld (2001) Measuring Cellu-lar structure at submicrometer scale with light scattering spectroscopy. IEEE J. Select. Top. Quant. Electron. 7:887-893   DOI   ScienceOn
4 Shao, Y. (2002) Modeling of Light Propagation in Biologi-cal Tissues. Ph.D. Thesis. University of Alberta, Edmonton Alberta, Canada
5 Dunn (1997) Light Scattering Properties of Cells. Ph.D. Thesis. University of Texas at Austin, Austin, Texas, USA
6 Quarteroni, A., R. Sacco, and F. Saleri (2000) Numerical Mathematics (Texts in Appl. Math., Vol. 37). Springer Verlag, New York, USA
7 Azzam, R. M. A. and N. M. Bashara (1977) Ellipsometry and Polarized Light. North Holland
8 Roper Scientific (2002), available online: http://www. roperscientific. com/library_enc_signal.shtml
9 Stefanita, C.-G., Y. Shao, W. Rozmus, C. E. Capjack, and C. J. Backhouse, Filtering scattered light in microchip-based cell diagnostics IEEE Trans. Instr. Meas. (in press)
10 Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin, Germany
11 Mie, G. (1908) Considerations on the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25:377-442
12 Schrum, D., C. Culbertson, S. Jacobson, and M. Ramsey (1999) Microchip-flow cytometry using electrokinetic fo-cusing. Anal. Chem. 71: 4173-4177   DOI   ScienceOn
13 Altendorf, E. H. and P. Yager (1998) Silcon microchannel optical flow cytometer. US Patent 5,726,751
14 Interference filter manufacturers' website or product catalogues: e.g. Coherent Inc., Andover Corporation, Melles Griot, Oriel etc
15 Shao, Y., A. V. Maxim'ov, I. G. Ourdev, W. Rozmus, and C. E. Capjack (2001) Spectral method simulations of light scattering by biological cells. IEEE J. Quant. Electron. 37:617-625   DOI   ScienceOn
16 Drezek, R., A. Dunn, and R. Richards-Kortum (1996) Three-dimensional computation of light scattering from cells. IEEE J. Select. Top. Quant. Electron. 2: 898-905   DOI   ScienceOn
17 Starlight Xpress (2002), available online: http://www.starlightccd.com
18 Drezek, R., A. Dunn, and R. Richards-Kortum (2000) A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges. Opt. Express 6: 147-157   DOI
19 Amin, M. R., C. E. Capjack, P. Frycz, W. Rozmus, and V. T. Tikhonchuk (1993) Two-dimensional simulations of stimulated Brillouin scattering in laser produced plasma. Phys. Rev. Lett. 71:81-84   DOI   ScienceOn
20 Crabtree, H. J., E. C. S. Cheong, D. A. Tilroe, and C. J. Backhouse (2001) Microchip injection and separation anomalies due to pressure effects. Anal. Chem. 73: 4079-4086   DOI   ScienceOn
21 Kohl, M.and M. Cope (1994) Influence of glucose Con-centration on light scattering in tissue. Opt. Lett. 17: 2170-2172
22 Drezek, R., A. Dunn, and R. Richards-Kortum (1999) Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements. Appl. Opt. 38: 3651-3661   DOI   PUBMED