Browse > Article

Synthesis and Characterization of Fructooligosaccharides Using Levansucrase with a High Concentration of Sucrose  

Seo Eun-Seong (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Lee Jin-Ha (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Engineering Research Institute, Chonnam National University)
Choi Jae-Young (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Seo Mi-Young (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University)
Lee Hee-Sun (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, Department of Physics, Chonnam National University)
Chang Seuk-Sang (Pohang Accelerator Laboratory)
Lee Hyung-Jong (Department of Molecular and Biotechnology, Chonnam National University, Biology Research Center for Industrial Accelerators, Dongshin University)
Choi Jeong-Sik (Biology Research Center for Industrial Accelerators, Dongshin University)
Kim Doman (Laboratory of Functional Carbohydrate Enzyme and Microbial Genomics, Chonnam National University, School of Biological Sciences and Technology and Research Institute for Catalysis, Chonnam National University, Biology Research Center for Industrial Accelerators, Dongshin University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.9, no.5, 2004 , pp. 339-344 More about this Journal
Abstract
A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose ($1{\~}3$ M) was developed using levansucrase prepared from Leuconortoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under $120^{\circ}C$. The percentage of BFOS in the reaction digest was $95.7\%$ (excluding monosaccharides; $4.3\%$ was levan). BFOS reduced the insoluble glucan formation by Streptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions of S, sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo- and acid-stable properties and 3s potential inhibitors of dental caries.
Keywords
levansucrase; fructooligosaccharides; inhibition; insoluble glucan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Marsh, P. D. (1999) Oral Microbiology. 4th ed., pp. 58-81. Wright, Woburn, USA
2 Park, H. E., N. H. Park, M. J. Kim, T. H. Lee, H. G. Lee, J. Y. Yang, and J. H. Cha (2003) Enzymatic synthesis of fructosyl oligosaccharides by levansucrase from Microbacterium laevaniformans ATCC 15953. Enzyme Microb. Technol. 32: 820-827   DOI   ScienceOn
3 Kim, D., J. F. Robyt, S. Y. Lee, J. H. Lee, and Y. M. Kim (2003) Dextran molecular size. and degree of branching as a function of sucrose concentration, pH, and temperature of reation of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr. Res. 338: 1183-1189   DOI   ScienceOn
4 Hamada, S. and H. D. Slade (1980) Biology, immunology and cariogencity of Streptococcus mutans. Microbiol. Rev. 44: 331-384
5 Robyt, J. F. and P. J. Martin (1983) Mechanism of synthesis of D-glucans by D-glucosyltransferase from Streptococcus mutans 6715. Carbohydr. Res. 113: 301-315   DOI   ScienceOn
6 Vacca-smith, A. M., A. R. Venkitaraman, and R. G. Quivey (1996) Interaction of Streptococcal glucosyltransferase with $\alpha$-amylase and starch on the surface of salivacoated hydroxyapatite. Archs. Oral Biol. 41: 291-298   DOI   ScienceOn
7 Imai, S., K. Takeuchi, K. Shibata, S. Yoshikawa, S. Kitahata, S. Okada, S. Araya, and T. Nisizawa (1984) Screening of sugars inhibitory against sucrose-dependent synthesis and adherence of insoluble glucan and acid production by Streptococcus mutans. J. Dent. Res. 63: 1292-1297
8 Heo, S. J., D. Kim, I. S. Lee, and P. S. Chang (1999) Develoment of mixed-culture fermentation process and charaterization for new oligosacchariedes and dextran using Lipomyces starkeyi and Leuconostoc mesenteroides. Kor. J. Appl. Microbiol. Biotechnol. 27: 304-310
9 Lee, J. H., S. Y Lee, G. O. Lee, E. S. Seo, S. S. Chang, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by a novel carbohydrate from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111   DOI   ScienceOn
10 Jang, E. K., K. H. Jang, I. Koh, I. H. Kim, S. H. Kim, S. A. Kang, C. H. Kim, S. D. Ha, and S. K. Rhee (2002) Molecular characterization of the levansucrase gene from Pseudomonas aurantiaca S-4380 and its expression in Escherichia coli. J. Microbiol. Biotechnol. 12: 603-609
11 Fu, D. T. and J. F. Robyt (1991) Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases. Carbohydr. Res. 217: 201-211   DOI   PUBMED   ScienceOn
12 Tanzer, J. M., M. L. Freedman, and R. J. Fitzgerald (1985) Virulence of mutants defective in glucosyltransferase, dextran mediated aggregation, or dextranase activity. pp. 204-211. In: S. E. Mergenhagen and B. Rosan (eds.). Molecular Basis of Oral Microbial Adhesion. ASM, Washington, USA
13 Tsuchiya, H. M., N. N. Hellman, H. J. Koepsell, J. Corman, S. S. Stringer, and R. W. Jackson. (1955) Factor affecting molecular weight of enzymatically synthesized dextran. J. Am. Chem. Soc. 77: 2412-2419   DOI
14 Magali, R. S., R. M. Willemot, and P. Monsan (2000) Glucansucrase: Molecular engineering and oligosaccharide synthesis. J. Mol. Catalysis 16: 117-128   DOI   ScienceOn
15 Kim, C. Y., J. H. Lee, B. H. Kim, S. K. Yoo, E. S. Seo, K. S. Cho, D. F. Day, and D. Kim (2002) Production of mannitol using Leuconostoc mesenteroides NRRL B-1149. Biotechnol. Bioprocess Eng. 7: 234-236   DOI   ScienceOn
16 Lindgren, S. E. and W. J. Dobrogosz (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS. Microbiol. Rev. 7: 149-163
17 Chambert, R., M. C. Rain-Guion, and M. F. Petit-Glatron (1992) Readthrough of the Bacillus subtilis stop codon produces an extended enzyme displaying a higher polymerase activity. Biochim. Biophys. Acta 1132: 145-153   DOI   ScienceOn
18 Ryu, S. J., D. Kim, H. J. Ryu, and D. F. Day (2000) Purification and partial characterization of a novel glucanhydrolase from Lipomyces starkeyi KSM 22 and its use for inhibition of insoluble glucan formation. Biosci. Biotechnol. Biochem. 64: 223-228   DOI   ScienceOn
19 Song, D. D. and N. A. Jacques (1999) Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J. Biochem. 341: 285-291   DOI   ScienceOn
20 Robyt, J. F. (1995) Mechanism in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168   DOI   PUBMED   ScienceOn
21 Geier, G. and K. Geider (1993) Characterization and influence on virulence of the levansucrase gene from the firelight pathogen Erwinia amylovora. Physiol. Mol. Plant Pathol. 42: 387-404   DOI   ScienceOn