Browse > Article

Dual Insecticidal Activity of Spodoptera-Toxic Bacillus thuringiensis Strain Transformed with Lepidopteran-Specific Cry Toxin  

Kang, Joong-Nam (Department of Agricultural Biotechnology, Seoul National University)
Rob, Jong-Yul (Department of Agricultural Biotechnology, Seoul National University)
Shin, Sang-Chul (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute)
Koh, Sang-Hyun (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute)
Chung, Yeong-Jin (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute)
Kim, Yang-Su (Department of Agricultural Biotechnology, Seoul National University)
Wang, Yong (Department of Agricultural Biotechnology, Seoul National University)
Choi, Hee-Kyu (Department of Agricultural Biotechnology, Seoul National University)
Li, Ming-Shun (Department of Agricultural Biotechnology, Seoul National University)
Choi, Jae-Young (Department of Agricultural Biotechnology, Seoul National University)
Je, Yeon-Ho (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Asia-Pacific Entomology / v.10, no.2, 2007 , pp. 137-143 More about this Journal
Abstract
The E. coli-B. thuringiensis shuttle vector for expression of cry1Ac, pHT1K-1Ac plasmid was introduced into acrystalliferous B. thuringiensis Cry-B and Spodoptera toxic STB-3 strain. The presence of a recombinant plasmid in transformants after electroporation was confirmed by PCR. The 1K-1Ac/Cry-B (Cry-B transformant) and 1K-1Ac/STB-3 (STB-3 transformant) produced bipyramidal-shaped parasporal inclusion that was 130 kDa in size as like B. thuringiensis subsp. kurstaki HD-73. In P. xylostella bioassay, these transformants showed significantly high toxicity than the wild-type recipients and further, in case of B. thuringiensis STB-3 transformant still had original Spodoptera toxicity. These results suggested that the pHT1K could be successfully applied for generating individual B. thuringiensis strains that produce various combinations of insecticidal proteins to expand their host spectrum and enhance insecticidal activity.
Keywords
Bacillus thuringiensis; STB-3; pHT1K-1Ac; cry1Ac gene; Spodoptera;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Adang, M.J., M.J. Staver, T.A. Rocheleau, J. Leighton, R.F. Barker and D.V. Thompson. 1985. Characterized fulllength and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289-300   DOI   ScienceOn
2 Arantes, O. and D. Lereclus. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115-119   DOI   ScienceOn
3 Baum, J.A., D.M. Coyle, M.P. Gilbert, C.S. Jany and C. Gawron-Burke. 1990. Novel cloning vectors for Bacillus thuringiensis. Appl. Environ. Microbiol. 56: 3420-3428
4 Chang, C., S.M. Dai, R. Frutos, B.A. Federici and S.S. Gill. 1992. Properties of a 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expressed in B. thuringiensis subsp. kurstaki by using the shuttle vector pHT3101. Appl. Environ. Microbiol. 58: 507-512
5 Crickmore, N., D.R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo and D.H. Dean 2006. Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_ Crickmore/Bt/
6 Finney, D.J. 1971. Probit analysis, 3rd ed, vol. Cambridge University Press, Cambridge, UK
7 Schnepf, H.E. and H.R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA. 78: 2893-2897
8 Stahly, D.P., D.W. Dingman, LA Bulla, Jr. and A.I. Aronson. 1978. Possible origin and function of the paraspora1 crystal in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84: 581-588   DOI   ScienceOn
9 Yue, C., M. Sun and Z. Yu. 2005. Broadening the insecticidal spectrum of lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol. Bioeng. 91: 296-303   DOI   ScienceOn
10 Lereclus, D., O. Arantes, J. Chaufaux and M.-M. Lecadet. 1989. Transformation and expression of a cloned $\delta$-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211-218
11 Chang, J.H., Y.H. Je, J.Y. Roh, H.W. Park, B.R. Jin, D.W. Lee, S.H. Kim, Z. Yang and S.K. Kang. 1999. Isolation and characterization of a strain of Bacillus thuringiensis serovar kenyae encoding only $\delta$-endotoxin Cry1E. Appl. Ent. Zoo I. 34: 379-382   DOI
12 Masson, L., G. Prefontaine and R. Brousseau. 1989. Transformation of Bacillus thuringiensis vegetative cells by electroporation. FEMS Microbiol. Lett. 51: 273-277
13 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
14 Crickmore, N., C. Nicholls, D.J. Earp, T.C. Hodgman and D.J. Ellar. 1990. The construction of Bacillus thuringiensis strains expressing novel entomocidal $\delta$-endotoxin combinations. Biochem. J. 270: 133-136   DOI
15 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. BioI. Rev. 62: 775-806
16 Roh, J.Y., M.S. Li, J.H. Chang, J.Y. Choi, H.J. Shim, S.C. Shin, K.S. Boo and Y.H. Je. 2004. Expression and characterization of a recombinant CrylAc crystal protein with enhanced green fluorescent protein in acrystalliferous Bacillus thuringiensis. Lett. Appl. Microbiol. 38: 393-399   DOI   ScienceOn
17 Gonzalez, J.M., Jr., B.J. Brown and B.C. Carlton. 1982. Transfer of Bacillus thuringiensis plasm ids coding for $\delta$-endotoxin among strains of B. thuringiensis and 8. cereus. Proc. Natl. Acad. Sci. USA. 79: 6951-6955
18 Mesrati, L.A., M.D. Karray, S. Tounsi and S. Jaoua. 2005. Construction of a new high-copy number shuttle vector of Bacillus thuringiensis. Lett. Appl. Microbiol. 41: 361-366   DOI   ScienceOn
19 Gammon, K., G.W. Jones, S.J. Hope, C.M. de Oliveira, L. Regis, M.H. Silva Filha, B.N. Dancer and C. Berry. 2006. Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus sphaericus. Appl. Environ. Microbiol. 72: 1766-1770   DOI   ScienceOn
20 Visser, B., T. van der Salm, W. van den Brink and G. Folkers. 1988. Genes from Bacillus thuringiensis entomocidus coding for insect-specific crystal proteins. Mol. Gen. Genet. 212: 219-224   DOI
21 Kalman, S., K.L. Kiehne, N. Cooper, M.S. Reynoso and T. Yamamoto. 1995. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl. Environ. Microbiol. 61: 3063-3068
22 Kang, J.N., Y.-S. Kim, Y. Wang, H. Choi, M.S. Li, S.C. Shin, B.R. Jin, J.Y. Roh, J.Y. Choi and Y.H. Je. 2005. Construction of a high-efficiency shuttle vector containing the minimal replication origin of Bacillus thuringiensis. Int. J. Indust. Entomol. 11: 125-127   과학기술학회마을
23 Lambert, B. and M. Peferoen. 1992. Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42: 112-122   DOI   ScienceOn
24 Lecadet, M.M., J. Chaufaux, J. Ribier and D. Lereclus. 1992. Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl. Environ. Microbiol. 58: 840-849