Browse > Article
http://dx.doi.org/10.5223/pghn.2015.18.4.217

Early Life Factors Influencing the Risk of Obesity  

Lifschitz, Carlos (Department of Pediatrics, Hospital Italiano de Buenos Aires)
Publication Information
Pediatric Gastroenterology, Hepatology & Nutrition / v.18, no.4, 2015 , pp. 217-223 More about this Journal
Abstract
The obesity epidemic is a worldwide problem. Factors predisposing to obesity include genetics, race, socioeconomic conditions, birth by cesarean section, and perinatal antibiotic use. High protein (HP) content in infant formulas has been identified as a potential culprit predisposing to rapid weight gain in the first few months of life and leading to later obesity. In a large multicountry study the effects of lower protein (LP) formula (1.77 and 2.2 g protein/100 kcal, before and after the 5th month, respectively) were compared to those of higher protein (2.9 and 4.4 g protein/100 kcal, respectively). Results indicated that at 24 months, the weight-for-length z score of infants in the LP formula group was 0.20 (0.06, 0.34) lower than that of the HP group and was similar to that of the breastfed reference group. The authors concluded that a HP content of infant formula is associated with higher weight in the first 2 years of life but has no effect on length. LP intake in infancy might diminish the later risk of overweight and obesity. At 6 years of age HP children had a significantly higher body mass index (by 0.51; 95% confidence interval [CI], 0.13-0.90; p=0.009) and a 2.43 (95% CI, 1.12-5.27; p=0.024) fold greater risk of becoming obese than those who received the LP. In conclusion, several factors may influence development of metabolic syndrome and obesity. Breastfeeding should always be encouraged. An overall reduction of protein intake in formula non breastfed infants seems to be an additional way to prevent obesity.
Keywords
Obesity; Infant formula; Low protein formula; Cesarean section;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duncan B, Schaefer C, Sibley B, Fonseca NM. Reduced growth velocity in exclusively breast-fed infants. Am J Dis Child 1984;138:309-13.
2 Whitehead RG, Paul AA. Growth charts and the assessment of infant feeding practices in the western world and in developing countries. Early Hum Dev 1984;9:187-207.   DOI
3 Volz VR, Book LS, Churella HR. Growth and plasma amino acid concentrations in term infants fed either whey-predominant formula or human milk. J Pediatr 1983;102:27-31.   DOI
4 Harrison GG, Graver EJ, Vargas M, Churella HR, Paule CL. Growth and adiposity of term infants fed whey-predominant or casein-predominant formulas or human milk. J Pediatr Gastroenterol Nutr 1987;6:739-47.   DOI
5 Köhler L, Meeuwisse G, Mortensson W. Food intake and growth of infants between six and twenty-six weeks of age on breast milk, cow's milk formula, or soy formula. Acta Paediatr Scand 1984;73:40-8.   DOI
6 Koletzko B. Early nutrition and its later consequences: new opportunities. Adv Exp Med Biol 2005;569:1-12.   DOI
7 Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al; European Childhood Obesity Trial Study Group. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 2009;89:1836-45.   DOI
8 Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, et al; European Childhood Obesity Trial Study Group. Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 2011;94(6 Suppl):1776S-84S.   DOI
9 Inostroza J, Haschke F, Steenhout P, Grathwohl D, Nelson SE, Ziegler EE. Low-protein formula slows weight gain in infants of overweight mothers. J Pediatr Gastroenterol Nutr 2014;59:70-7.   DOI
10 Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, et al; European Childhood Obesity Trial Study Group. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 2014;99:1041-51.   DOI
11 Ziegler EE, Fields DA, Chernausek SD, Steenhout P, Grathwohl D, Jeter JM, et al. Adequacy of infant formula with protein content of 1.6 g/100 kcal for infants between 3 and 12 months. J Pediatr Gastroenterol Nutr 2015;61:596-603.   DOI
12 Abrams SA, Hawthorne KM, Pammi M. A systematic review of controlled trials of lower-protein or energy- containing infant formulas for use by healthy full-term infants. Adv Nutr 2015;6:178-88.   DOI
13 Hainer V, Toplak H, Mitrakou A. Treatment modalities of obesity: what fits whom? Diabetes Care 2008;31 Suppl 2:S269-77.   DOI
14 Albuquerque D, Stice E, Rodriguez-Lopez R, Manco L, Nobrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics 2015;290:1191-221.   DOI
15 Yang W, Kelly T, He J. Genetic epidemiology of obesity. Epidemiol Rev 2007;29:49-61.   DOI
16 Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol 2006;26:968-76.   DOI
17 Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005;115:e290-6.   DOI
18 Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes (Lond) 2013;37:900-6.   DOI
19 Huh SY, Rifas-Shiman SL, Zera CA, Edwards JW, Oken E, Weiss ST, et al. Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study. Arch Dis Child 2012;97:610-6.   DOI
20 Li H, Ye R, Pei L, Ren A, Zheng X, Liu J. Caesarean delivery, caesarean delivery on maternal request and childhood overweight: a Chinese birth cohort study of 181 380 children. Pediatr Obes 2014;9:10-6.   DOI
21 Pei Z, Heinrich J, Fuertes E, Flexeder C, Hoffmann B, Lehmann I, et al; Influences of Lifestyle-Related Factors on the Immune System and the Development of Allergies in Childhood plus Air Pollution and Genetics (LISAplus) Study Group. Cesarean delivery and risk of childhood obesity. J Pediatr 2014;164:1068-73.   DOI
22 Li HT, Zhou YB, Liu JM. The impact of cesarean section on offspring overweight and obesity: a systematic review and meta-analysis. Int J Obes (Lond) 2013;37:893-9.   DOI
23 Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond) 2011;35:522-9.   DOI
24 Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond) 2013;37:16-23.   DOI
25 Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 2014;168:1063-9.   DOI
26 Michaelsen KF, Greer FR. Protein needs early in life and long-term health. Am J Clin Nutr 2014;99:718S-22S.   DOI
27 Michaelsen KF, Larnkjaer A, Molgaard C. Amount and quality of dietary proteins during the first two years of life in relation to NCD risk in adulthood. Nutr Metab Cardiovasc Dis 2012;22:781-6.   DOI
28 Ong KK, Loos RJ. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. Acta Paediatr 2006;95:904-8.   DOI
29 Alexy U, Kersting M, Sichert-Hellert W, Manz F, Schoch G. Macronutrient intake of 3- to 36-month-old German infants and children: results of the DONALD Study. Dortmund Nutritional and Anthropometric Longitudinally Designed Study. Ann Nutr Metab 1999;43:14-22.   DOI
30 Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life--a systematic review. Obes Rev 2005;6:143-54.   DOI
31 Druet C, Stettler N, Sharp S, Simmons RK, Cooper C, Smith GD, et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol 2012;26:19-26.   DOI
32 Hitchcock NE, Gracey M, Gilmour Al, Owles EN. Nutrition and growth in infancy and early childhood: a longitudinal study from birth to 5 years. In: Falkner F, Kretchner N, Rossi E, eds. Monographs in Paediatrics Series Vol. 19. Basel, Switzerland: Karger, 1986.
33 Chandra RK. Physical growth of exclusively breast fed-infants. Nutr Res 1982;2:275-6.   DOI
34 Salmenperä L, Perheentupa J, Siimes MA. Exclusively breast-fed healthy infants grow slower than reference infants. Pediatr Res 1985;19:307-12.   DOI
35 Persson LA. Infant feeding and growth--a longitudinal study in three Swedish communities. Ann Hum Biol 1985;12:41-52.   DOI
36 Whitehead RG, Paul AA, Ahmed EA. Weaning practices in the United Kingdom and variations in anthropometric development. Acta Paediatr Scand Suppl 1986;323:14-23.