Browse > Article
http://dx.doi.org/10.1007/s43188-022-00124-6

Semi-automated approach for generation of biological networks on drug-induced cholestasis, steatosis, hepatitis, and cirrhosis  

Shin, Hyun Kil (Toxicoinformatics Group, Department of Predictive Toxicology, Korea Institute of Toxicology)
Florean, Oana (Edelweiss Connect GmbH)
Hardy, Barry (Edelweiss Connect GmbH)
Doktorova, Tatyana (Edelweiss Connect GmbH)
Kang, Myung‑Gyun (Toxicoinformatics Group, Department of Predictive Toxicology, Korea Institute of Toxicology)
Publication Information
Toxicological Research / v.38, no.3, 2022 , pp. 393-407 More about this Journal
Abstract
Drug-induced liver injury (DILI) is one of the leading reasons for discontinuation of a new drug development project. Diverse machine learning or deep learning models have been developed to predict DILI. However, these models have not provided an adequate understanding of the mechanisms leading to DILI. The development of safer drugs requires novel computational approaches that enable the prompt understanding of the mechanism of DILI. In this study, the mechanisms leading to the development of cholestasis, steatosis, hepatitis, and cirrhosis were explored using a semi-automated approach for data gathering and associations. Diverse data from ToxCast, Comparative Toxicogenomic Database (CTD), Reactome, and Open TG-GATEs on reference molecules leading to the development of the respective diseases were extracted. The data were used to create biological networks of the four diseases. As expected, the four networks had several common pathways, and a joint DILI network was assembled. Such biological networks could be used in drug discovery to identify possible molecules of concern as they provide a better understanding of the disease-specific key events. The events can be target-tested to provide indications for potential DILI effects.
Keywords
DILI; Drug-induced liver disease; Hepatotoxicity; Computational toxicology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lubyova B, Hodek J, Zabransky A, Prouzova H, Hubalek M, Hirsch I, Weber J (2017) PRMT5: a novel regulator of hepatitis B virus replication and an arginine methylase of HBV core. PLoS ONE 12:e0186982. https://doi.org/10.1371/journal.pone.0186982   DOI
2 Katayama A, Nakatsuka A, Eguchi J, Murakami K, Teshigawara S, Kanzaki M, Nunoue T, Hida K, Wada N, Yasunaka T, Ikeda F, Takaki A, Yamamoto K, Kiyonari H, Makino H, Wada J (2015) Benefcial impact of Gpnmb and its significance as a biomarker in nonalcoholic steatohepatitis. Sci Rep 5:16920. https://doi.org/10.1038/srep16920   DOI
3 Yang M, Nickels JT (2015) MOGAT2: a new therapeutic target for metabolic syndrome. Diseases 3:176-192. https://doi.org/10.3390/diseases3030176   DOI
4 Villanueva-Paz M, Moran L, Lopez-Alcantara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ (2021) Oxidative stress in drug-induced liver injury (DILI): from mechanisms to biomarkers for use in clinical practice. Antioxidants 10:390. https://doi.org/10.3390/antiox10030390   DOI
5 Low Y, Uehara T, Minowa Y, Yamada H, Ohno Y, Urushidani T, Sedykh A, Muratov E, Kuz'min V, Fourches D, Zhu H, Rusyn I, Tropsha A (2011) Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol 24:1251-1262. https://doi.org/10.1021/tx200148a   DOI
6 Chen X, Roberts R, Tong W, Liu Z (2021) Tox-GAN: an artifcial intelligence approach alternative to animal studies-a case study with toxicogenomics. Toxicol Sci. https://doi.org/10.1093/toxsci/kfab157   DOI
7 Escher G, Nawrocki A, Staub T, Vishwanath BS, Frey BM, Reichen J, Frey FJ (1998) Down-regulation of hepatic and renal 11β-hydroxysteroid dehydrogenase in rats with liver cirrhosis. Gastroenterology 114:175-184. https://doi.org/10.1016/S0016-5085(98)70645-6   DOI
8 Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K, Wollscheid-Lengeling E, Bradford B, Caruso M, Gazova I, Sanchez A, Lisowski ZM, Alves J, Molina-Gonzalez I, Davtyan H, Lodge RJ, Glover JD, Wallace R, Munro DAD, David E, Amit I, Miron VE, Priller J, Jenkins SJ, Hardingham GE, Blurton-Jones M, Mabbott NA, Summers KM, Hohenstein P, Hume DA, Pridans C (2019) Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat Commun 10:3215. https://doi.org/10.1038/s41467-019-11053-8   DOI
9 Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43:D921-D927. https://doi.org/10.1093/nar/gku955   DOI
10 Liang YJ, Jiang JG (2015) Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production. RSC Adv 5:45558-45570. https://doi.org/10.1039/C5RA04635A   DOI
11 Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B, Lettieri T, Munn S, Nepelska M, Ottinger MA, Vergauwen L, Whelan M (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312-320. https://doi.org/10.1093/toxsci/kfu199   DOI
12 Iorga A, Dara L (2019) Chapter Two-cell death in drug-induced liver injury. In: Ramachandran A, Jaeschke H (eds) Advances in Pharmacology, vol 85. Academic Press, New York, pp 31-74. https://doi.org/10.1016/bs.apha.2019.01.006   DOI
13 Sookoian S, Castano GO, Burgueno AL, Rosselli MS, Gianotti TF, Mallardi P, Martino JS, Pirola CJ (2010) Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis 209:585-591. https://doi.org/10.1016/j.atherosclerosis.2009.10.011   DOI
14 Oishi Y, Hayashi S, Isagawa T, Oshima M, Iwama A, Shimba S, Okamura H, Manabe I (2017) Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep 7:7086. https://doi.org/10.1038/s41598-017-07100-3   DOI
15 Wu R, Zhang Y, Xiang Y, Tang Y, Cui F, Cao J, Zhou L, You Y, Duan L (2018) Association between serum S100A9 levels and liver necroinflammation in chronic hepatitis B. Transl Med 16:83. https://doi.org/10.1186/s12967-018-1462-2   DOI
16 Wang G, Xiu P, Li F, Xin C, Li K (2014) Vitamin A supplementation alleviates extrahepatic cholestasis liver injury through Nrf2 activation. Oxid Med Cell Longev 2014:273692. https://doi.org/10.1155/2014/273692   DOI
17 Ramalingam L, Menikdiwela K, LeMieux M, Dufour JM, Kaur G, Kalupahana N, Moustaid-Moussa N (2017) The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis 1863:1106-1114. https://doi.org/10.1016/j.bbadis.2016.07.019   DOI
18 Erdel M, Weiskirchen R (1998) Assignment of CSRP1 encoding the LIM domain protein CRP1, to human chromosome 1q32 by fluorescence in situ hybridization. Cytogenet Cell Genet 83:10-11. https://doi.org/10.1159/000015152   DOI
19 Aleksunes LM, Manautou JE (2007) Emerging role of Nrf2 in protecting against hepatic and gastrointestinal disease. Toxicol Pathol 35:459-473. https://doi.org/10.1080/01926230701311344   DOI
20 Silbergeld EK, Mandrioli D, Cranor CF (2015) Regulating chemicals: law, science, and the unbearable burdens of regulation. Annu Rev Public Health 36:175-191. https://doi.org/10.1146/annurevpublhealth-031914-122654   DOI
21 Kim DK, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H (2002) The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79:95-103. https://doi.org/10.1006/geno.2001.6678   DOI
22 Van Norman GA (2019) Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci 4:845-854. https://doi.org/10.1016/j.jacbts.2019.10.008   DOI
23 Vall A, Sabnis Y, Shi J, Class R, Hochreiter S, Klambauer G (2021) The promise of AI for DILI prediction. Front Artif Intell 4:638410. https://doi.org/10.3389/frai.2021.638410   DOI
24 Rudin C (2019) Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell 1:206-215. https://doi.org/10.1038/s42256-019-0048-x   DOI
25 Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158-165. https://doi.org/10.1016/j.tox.2013.08.011   DOI
26 Sierra-Ramos C, Velazquez-Garcia S, Vastola-Mascolo A, Hernandez G, Faresse N, de la Alvarez D (2020) SGK1 activation exacerbates diet-induced obesity, metabolic syndrome and hypertension. Endocrinology 244:149-162. https://doi.org/10.1530/JOE-19-0275   DOI
27 Teratani T, Tomita K, Furuhashi H, Sugihara N, Higashiyama M, Nishikawa M, Irie R, Takajo T, Wada A, Horiuchi K, Inaba K, Hanawa Y, Shibuya N, Okada Y, Kurihara C, Nishii S, Mizoguchi A, Hozumi H, Watanabe C, Komoto S, Nagao S, Yamamoto J, Miura S, Hokari R, Kanai T (2019) Lipoprotein lipase up-regulation in hepatic stellate cells exacerbates liver fibrosis in nonalcoholic steatohepatitis in mice. Hepatol Commun 3:1098-1112. https://doi.org/10.1002/hep4.1383   DOI
28 Hardt C, Bauer C, Schuchhardt J, Herwig R (2018) Computational network analysis for drug toxicity prediction. In: von Stechow L, Santos Delgado A (eds) Computational cell biology: methods and protocols. Springer New York, New York, pp 335-355. https://doi.org/10.1007/978-1-4939-8618-7_16   DOI
29 Rim KT (2021) Application of the adverse outcome pathway framework to predict the toxicity of chemicals in the semiconductor manufacturing industry. Mol Cell Toxicol 17:325-345. https://doi.org/10.1007/s13273-021-00139-4   DOI
30 Liu L, Wang Q, Wang Q, Zhao X, Zhao P, Geng T, Gong D (2018) Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth. BMC Vet Res 14:325. https://doi.org/10.1186/s12917-018-1653-3   DOI
31 Lahey R, Carley AN, Wang X, Glass CE, Accola KD, Silvestry S, O'Donnell JM, Lewandowski ED (2018) Enhanced redox state and efficiency of glucose oxidation with miR based suppression of maladaptive NADPH-dependent malic enzyme 1 expression in hypertrophied hearts. Circ Res 122:836-845. https://doi.org/10.1161/CIRCRESAHA.118.312660   DOI
32 Zhu BH, Zhang RH, Lv NN, Yang GP, Wang YS, Pan KH (2018) The role of malic enzyme on promoting total lipid and fatty acid production in phaeodactylum tricornutum. Front Plant Sci 9:826.https://doi.org/10.3389/fpls.2018.00826   DOI
33 Chung SY, Kao CH, Villarroya F, Chang HY, Chang HC, Hsiao SP, Liou G-G, Chen SL (2015) Bhlhe40 represses PGC-1α activity on metabolic gene promoters in myogenic cells. Mol Cell Biol 35:2518-2529. https://doi.org/10.1128/MCB.00387-15   DOI
34 Havis E, Duprez D (2020) EGR1 transcription factor is a multifaceted regulator of matrix production in tendons and other connective tissues. Int J Mol Sci 21:1664. https://doi.org/10.3390/ijms21051664   DOI
35 Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4. https://doi.org/10.1186/gb-2008-9-s1-s4   DOI
36 Doktorova TY, Oki NO, Mohoric T, Exner TE, Hardy B (2020) A semi-automated workflow for adverse outcome pathway hypothesis generation: the use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 114:104652. https://doi.org/10.1016/j.yrtph.2020.104652   DOI
37 Chou HC, Chen CH, Lee HS, Lee CZ, Huang GT, Yang PM, Lee PH, Sheu JC (2007) Alterations of tumour suppressor gene PPP2R1B in hepatocellular carcinoma. Cancer Lett 253:138-143. https://doi.org/10.1016/j.canlet.2007.01.016   DOI
38 Upadhyay A, Dixit U, Manvar D, Chaturvedi N, Pandey VN (2013) Afnity capture and identification of host cell factors associated with hepatitis C virus (+) strand subgenomic RNA. Mol Cell Proteomics 12:1539-1552. https://doi.org/10.1074/mcp.M112.017020   DOI
39 Gu JG, Zhu Cl, Cheng DZ, Xie Y, Liu F, Zhou X (2011) Enchanced levels of apolipoprotein M during HBV infection feedback suppresses HBV replication. Lipids Health Dis 10:154. https://doi.org/10.1186/1476-511X-10-154   DOI
40 Li TZ, Kim SM, Hur W, Choi JE, Kim J-H, Hong SW, Lee EB, Lee JH, Yoon SK (2017) Elk-3 contributes to the progression of liver fibrosis by regulating the epithelial-mesenchymal transition. Gut Liver 11:102-111. https://doi.org/10.5009/gnl15566   DOI
41 Banworth MJ, Li G (2018) Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 9:158-181. https://doi.org/10.1080/21541248.2017.1397833   DOI
42 Kostadinova RM, Nawrocki AR, Frey FJ, Frey BM (2005) Tumor necrosis factor alpha and phorbol 12-myristate-13-acetate downregulate human 11β-hydroxysteroid dehydrogenase type 2 through p50/p50 NF-κB homodimers and Egr-1. FASEB J 19:1-30. https://doi.org/10.1096/f.04-2820fje   DOI
43 Warskulat U, Borsch E, Reinehr R, Heller-Stilb B, Monnighof I, Buchczyk D, Donner M, Flogel U, Kappert G, Soboll S, Beer S, Pfefer K, Marschall H-U, Gabrielsen M, Amiry-Moghaddam M, Ottersen OP, Dienes HP, Haussinger D (2006) Chronic liver disease is triggered by taurine transporter knockout in the mouse. FASEB J 20:574-576. https://doi.org/10.1096/f.05-5016fje   DOI
44 Haukeland JW, Damas JK, Konopski Z, Loberg EM, Haaland T, Goverud I, Torjesen PA, Birkeland K, Bjoro K, Aukrust P (2006) Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. Hepatology 44:1167-1174. https://doi.org/10.1016/j.jhep.2006.02.011   DOI
45 Bansal S, Biswas G, Avadhani NG (2013) Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol 2:273-283. https://doi.org/10.1152/ajprenal.00160.2013   DOI