Browse > Article
http://dx.doi.org/10.1007/s43188-021-00097-y

Sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on muscle tissue transaminases of Oreochromis niloticus in vivo  

Amin, Muhammad (Department of Zoology, University of Karachi)
Yousuf, Masarrat (Department of Zoology, University of Karachi)
Ahmad, Naveed (Department of Maritime Science, Bahria University)
Attaullah, Mohammad (Department of Zoology, University of Malakand)
Ikram, Muhammad (Department of Chemistry, Abdul Wali Khan University)
Zaid, Attia A. Abou (Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University)
Yaro, Clement Ameh (Department of Animal and Environmental Biology, University of Uyo)
Alshammari, Eida M. (Department of Chemistry, College of Sciences, University of Ha'il)
Binnaser, Yaser S. (Department of Biology, College of Sciences, Taibah University)
Batiha, Gaber El‑Saber (Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University)
Buneri, Islam Dad (Department of Zoology, University of Karachi)
Publication Information
Toxicological Research / v.38, no.2, 2022 , pp. 187-194 More about this Journal
Abstract
Organophosphates and synthetic pyrethroid insecticides have been commonly used in public health and agriculture. The present study aimed to evaluate the sub-lethal effects of organophosphates and synthetic pyrethroid insecticides on transaminases: glutamate oxaloacetate/aspartate transaminase (AST) and glutamate pyruvate/alanine transaminase (ALT) in Oreochromis niloticus. Fish were exposed to malathion (OP), chlorpyrifos (OP) and λ-cyhalothrin (synthetic pyrethroid) at sublethal concentrations of 1.425, 0.125 and 0.0039 ppm, respectively for 24 and 48 h. AST and ALT activities were shown to be remarkably (p<0.05) decreased and increased, respectively in O. niloticus treated with the insecticides. The highest and lowest inhibition in AST level were noted as -12.2% and -12.2% in chlorpyrifos and λ-cyhalothrin 24 h treated fish samples, respectively. The highest and lowest elevation in ALT level were recorded as+313% and 237% in 48 h chlorpyrifos and 24 h malathion treated fish samples, respectively. This indicates that the insecticides used in this study did not result in death but in changes in AST and ALT enzyme activities. Therefore, organophosphates (malathion, chlorpyrifos) and synthetic pyrethroid (λ-cyhalothrin) insecticides are toxic to fishes and could affects their survival in their natural habitat.
Keywords
Insecticides; Sub-lethal toxicity; Oreochromis niloticus; Transaminases;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Campana MA, Panzeri AM, Moreno VCJ et al (1999) Genotoxic evaluation of the pyrethroid lambda-cyhalothrin using the micronucleus test in erythrocytes of the fish Cheirodon interruptus interruptus. Mutai Res/Genet Toxicol Environ Mutagen 438:155-161. https://doi.org/10.1016/S1383-5718(98)00167-3   DOI
2 Alalibo K, Patricia UA, Ransome DE (2019) Effects of lambda cyhalothrin on the behaviour and histology of gills of Sarotherodon melanotheron in brackish water. Sci Afr 6:e00178. https://doi.org/10.1016/j.sciaf.2019.e00178   DOI
3 Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13-30. https://doi.org/10.1016/j.aquatox.2010.10.006   DOI
4 Banaee M, Sureda A, Mirvaghefi A et al (2011) Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pestic Biochem Physiol 99:1-6. https://doi.org/10.1016/j.pestbp.2010.09.001   DOI
5 Malarvizhi A, Kavitha C, Saravanan M et al (2012) Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J King Saud Univ Sci 24:179-186. https://doi.org/10.1016/j.jksus.2011.01.001   DOI
6 Lewis K, Tzilivakis J, Green A et al (2006) Pesticide properties DataBase (PPDB). http://hdl.handle.net/2299/15375
7 Devillers J, Bintein S, Domine D (1996) Comparison of BCF models based on log P. Chemosphere 33:1047-1065. https://doi.org/10.1016/0045-6535(96)00246-9   DOI
8 Jackson SH, Cowan-Ellsberry CE, Thomas G (2009) Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides. J Agric Food Chem 57:958-967. https://doi.org/10.1021/jf803064z   DOI
9 Maund SJ, Hamer MJ, Warinton JS et al (1998) Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pest Sci 54:408-417. https://doi.org/10.1002/(SICI)1096-9063(199812)54:4%3C408::AID-PS843%3E3.0.CO;2-T   DOI
10 Agrahari S, Gopal K, Pandey K (2006) Biomarkers of monocrotophos in a freshwater fish, Channa punctatus (Bloch). J Environ Bio 37:453-457
11 Kumar A, Sharma B, Pandey RS (2014) λ-Cyhalothrin and cypermethrin induce stress in the freshwater muddy fish, Clarias batrachus. Toxicol Environ Chem 96:136-149. https://doi.org/10.1080/02772248.2014.913865   DOI
12 Velisek J, Dobsikova R, Svobodova Z et al (2006) Effect of deltamethrin on the biochemical profile of common carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 76:992-998. https://doi.org/10.1007/s00128-006-1016-9   DOI
13 Sharafeldin K, Abdel-Gawad H, Ramzy E et al (2015) Harmful impact of profenofos on the physiological parameters in Nile tilapia, Oreochromis niloticus. Int J Basic Appl Sci 4:19-26   DOI
14 Borges A, Scotti LV, Siqueira DR et al (2007) Changes in hematological and serum biochemical values in jundia Rhamdia quelen due to sub-lethal toxicity of cypermethrin. Chemosphere 69:920-926. https://doi.org/10.1016/j.chemosphere.2007.05.068   DOI
15 Firat O, Cogun HY, Yuzereroglu TA et al (2011) A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiol Biochem 37:657-666. https://doi.org/10.1007/s10695-011-9466-3   DOI
16 Okechukwu EO, Auta J (2007) The effects of sub-lethal doses of lambda-cyhalothrin on some biochemical characteristics of the African catfish Clarias gariepinus. J Biol Sci 7:1473-1477. https://doi.org/10.3923/jbs.2007.1473.1477   DOI
17 Haider MJ, Rauf A (2014) Sub-lethal effects of diazinon on hematological indices and blood biochemical parameters in Indian carp, Cirrhinus mrigala (Hamilton). Braz Arch Biol Technol 57:947-953. https://doi.org/10.1590/S1516-8913201402086   DOI
18 De Smet H, Blust R (2001) Stress responses and changes in protein metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicol Environ Saf 48:255-262. https://doi.org/10.1006/eesa.2000.2011   DOI
19 Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110-116. https://doi.org/10.1016/j.envint.2014.11.007   DOI
20 Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G   DOI
21 Bhavan PS, Srinivasan V, Satgurunathan T et al (2015) Lethal and sub-lethal toxic effects of a pyrethroid insecticide, λ-cyhalothrin on activities of acetylcholinesterase, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase and catalase in the post-larvae of the prawn Macrobrachium rosenbergii. Adv Biores 6. https://doi.org/10.15515/abr.0976-4585.6.5.2229   DOI
22 Vijayavel K, Balasubramanian M (2007) Interaction of potash and decis in the ecophysiology of a freshwater fish Oreochromis mossambicus. Ecotoxicol Environ Saf 66:154-158. https://doi.org/10.1016/j.ecoenv.2005.12.005   DOI
23 Oruc EO, uner N (1999) Effects of 2, 4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environ Pollut 105:267-272. https://doi.org/10.1016/S0269-7491(98) 00206-1   DOI
24 Lee J-w, Kim J-e, Shin Y-j et al (2014) Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during longterm exposure to zinc oxide nanoparticles. Ecotoxicol Environ Saf 104:9-17. https://doi.org/10.1016/j.ecoenv.2014.01.040   DOI
25 Yousafzai AM, Shakoori A (2011) Hepatic responses of a freshwater fish against aquatic pollution. Pak J Zool 43
26 Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591-625. https://doi.org/10.1152/physrev.1997.77.3.591   DOI
27 El-Gawad E, Abbass A, Shaheen A (2012) Risks induced by pesticides on fish reproduction. In: Proceedings of the 5th global fisheries and aquaculture research conference, Faculty of Agriculture, Cairo University, Giza, 1-3 October 2012, pp 329-338
28 El-Demerdash FM, Yousef MI, Al-Salhen KS (2003) Protective effects of isoflavone on some biochemical parameters affected by cypermethrin in male rabbits. J Environ Sci Health B 38:365-378. https://doi.org/10.1081/PFC-120019902   DOI
29 Oluah N (1999) Plasma aspartate aminotransferase activity in the catfish Clarias albopunctatus exposed to sublethal zinc and mercury. Bull Environ Contam Toxicol 63:343-349. https://doi.org/10.1007/s001289900986   DOI
30 Asztalos B, Nemcsok J (1985) Effect of pesticides on the LDH activity and isoenzyme pattern of carp (Cyprinus carpio L.) sera. Comp Biochem Physiol C Comp Pharmacol Toxicol 82:217-219. https://doi.org/10.1016/0742-8413(85)90233-6   DOI
31 John PJ (2007) Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin. Fish Physiol Biochem 33:15-20. https://doi.org/10.1007/s10695-006-9112-7   DOI
32 Ganeshwade R (2011) Biochemical changes induced by dimethoate in the liver of fresh water fish Puntius ticto (HAM). Proc Biol Forum Int J 65-68. https://doi.org/10.5897/JENE11.134   DOI
33 El-Sayed YS, Saad TT, El-Bahr SM (2007) Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environ Toxicol Pharmacol 24:212-217. https://doi.org/10.1016/j.etap.2007.05.006   DOI
34 Patil VK, David, M (2009) Hepatotoxic potential of malathion in the freshwater teleost, Labeo rohita (Hamilton). Vet Arh 79:179-188. https://hrcak.srce.hr/37427
35 Banaee M (2013) Physiological dysfunction in fish after insecticides exposure. Insecticides Dev Saf More Effect Technol. https://doi.org/10.5772/54742   DOI
36 Ilahi I, Samar S, Khan I et al (2013) In vitro antioxidant activities of four medicinal plants on the basis of DPPH free radical scavenging. Pak J Pharm Sci 26:949-952
37 Yousef MI, Awad TI, Mohamed EH (2006) Deltamethrin-induced oxidative damage and biochemical alterations in rat and its attenuation by vitamin E. Toxicology 27:240-247. https://doi.org/10.1016/j.tox.2006.08.008   DOI
38 Nayak A, Das B, Kohli M et al (2004) The immunosuppressive effect of α-permethrin on Indian major carp, rohu (Labeo rohita Ham.). Fish Shellfish Immunol 16:41-50. https://doi.org/10.1016/S1050-4648(03) 00029-9   DOI
39 Gill TS, Pande J, Tewari H (1990) Enzyme modulation by sublethal concentrations of aldicarb, phosphamidon, and endosulfan in fish tissues. Pestic Biochem Physiol 38:231-244. https://doi.org/10.1016/0048-3575(90)90095-J   DOI
40 Guideline P-BT (2001) OECD guideline for the testing of chemicals. Hershberger 601:858
41 Huang X-J, Choi Y-K, Im H-S et al (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensor 6:756-782. https://doi.org/10.3390/s6070756   DOI
42 Reitzman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalo acetic acid, glutamic pyruvic transaminase. Am J Clin Path 28:56-63. https://doi.org/10.1093/ajcp/28.1.56   DOI
43 Sadhu AK, Chowdhury D, Mukhopadhyay P (1985) Relationship between serum enzymes, histological features and enzymes in hepatopancreas after sublethal exposure to malathion and phosphamidon in the murrel Channa striatus (BL.). Int J Environ Stud 24:35-41. https://doi.org/10.1080/00207238508710174   DOI
44 Eissa F, Ghanem K, Al-Sisi M (2020) Occurrence and human health risks of pesticides and antibiotics in Nile tilapia along the Rosetta Nile branch, Egypt. Toxicol Rep. https://doi.org/https://doi.org/10.1016/j.toxrep.2020.03.004   DOI
45 Velisek J, Jurcikova J, Dobsikova R et al (2007) Effects of deltamethrin on rainbow trout (Oncorhynchus mykiss). Environ Toxicol Pharmacol 23:297-301. https://doi.org/10.1007/s00128-006-1016-9   DOI
46 O'Brien RD (2016) Toxic phosphorus esters: chemistry, metabolism, and biological efects.Elsevier, p 446. https://doi.org/10.1002/ange.19620741227   DOI
47 Zaghloul K (2000) Effect of different water sources on some biological and biochemical aspects of the Nile tilapia Oreochromis niloticus and Nile cat fish Clarias gariepinus. J Zool 34:353-377
48 Federation WE, Association APH (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington
49 Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34:77-96. https://doi.org/10.1146/annurev.en.34.010189.000453   DOI
50 Kumar S, Kaushik G, Villarreal-Chiu JF (2016) Scenario of organophosphate pollution and toxicity in India: a review. Environ Sci Pollut Res 23:9480-9491. https://doi.org/10.1007/s11356-016-6294-0   DOI
51 Gill TS, Pande J, Tewari H (1990) Sublethal effects of an organophosphorus insecticide on certain metabolite levels in a freshwater fish, Puntius conchonius Hamilton. Pestic Biochem Physiol 36:290-299. https://doi.org/10.1016/0048-3575(90)90038-4   DOI
52 Ramaswamy M, Panneer TP, Selvam N (1999) Glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon mossambicus (Peters) exposed to a carbamate pesticide, carbaryl. Pestic Sci 55:1217-1221. https://doi.org/10.1002/(SICI)1096-9063(199912)55:12%3C1217::AID-S78%3E3.0.CO;2-G   DOI
53 Khan MZ, Erum ZS, Ahmad I, Fatima F (2002) Effect of agricultural pesticide permethrin on protein contents in liver and kidney of lizard species Calotes versicolor in comparison to in frog Rana tigrina. Bull Pure Appl Sci 21:93-97. https://doi.org/10.3923/jbs.2002.780.781   DOI