Browse > Article
http://dx.doi.org/10.1007/s43188-021-00098-x

Trade-offs between male fertility reduction and selected growth factors or the klotho response in a lipopolysaccharide-dependent mouse model  

Solek, Przemyslaw (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Mytych, Jennifer (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Sujkowska, Ewelina (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Grzegorczyk, Magdalena (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Jasiewicz, Patrycja (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Sowa‑Kucma, Magdalena (Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University)
Stachowicz, Katarzyna (Department of Neurobiology, Maj Institute of Pharmacology Polish Academy of Sciences)
Koziorowski, Marek (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Tabecka‑Lonczynska, Anna (Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow)
Publication Information
Toxicological Research / v.38, no.2, 2022 , pp. 175-186 More about this Journal
Abstract
The increasing number of depression cases leads to a greater need for new antidepressant treatment development. It is postulated that antidepressants may harm male fertility, but the cellular mechanism is still poorly understood. The role of growth factors and klotho protein in maintaining normal male reproductive function is well documented. Hence, the study aimed to investigate the effect of the antidepressant drug - imipramine (tricyclic AD), and other substances with antidepressant potential (ALS), administered in combination or in combination with LPS (an animal model of depression) on gene expression and protein synthesis of IGF-2 (insulin-like growth factor 2), TGF-β1 (transforming growth factor β1), NGF (nerve growth factor), KGF (keratinocyte growth factor) and protein synthesis of VEGF-A (vascular endothelial growth factor A), IGF-IR (insulin-like growth factor receptor 1), EGFR (epidermal growth factor receptor) and klotho in the testis of mice. Mice were injected intraperitoneally with selected ALS and LPS or 10% DMSO (controls) (n=7/group) once a day for 14 days. Animals were decapitated and testes collected for RNA and protein purification. PCR and western blot methods were employed for the evaluation of growth factors and klotho expression. The results obtained indicated a decreased level of most of the analyzed genes and proteins, except KGF; its expression increased after treatment with MTEP and IMI administrated individually and after NS-398, and IMI in combination with LPS. Our results may suggest that the tested ALS and LPS can contribute to a reduction of male fertility, but NS-398, IMI, and IMI+NS-398 may also act as stimulants after LPS.
Keywords
Antidepressant-like substances; LPS; Growth factors; Klotho; Testis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Stachowicz K (2019) Behavioral consequences of co-administration of MTEP and the COX-2 inhibitor NS398 in mice. Part 1. Behav Brain Res 370:111961. https://doi.org/10.1016/j.bbr.2019.111961   DOI
2 Evans-Hoeker EA, Eisenberg E, Diamond MP, Legro RS, Alvero R, Coutifaris C, Casson PR, Christman GM, Hansen KR, Zhang H, Santoro N, Steiner AZ (2018) Major depression, antidepressant use, and male and female fertility. Fertil Steril 109:879-887. https://doi.org/10.1016/j.fertnstert.2018.01.029   DOI
3 Yan YC, Sun YP, Zhang ML (1998) Testis epidermal growth factor and spermatogenesis. Arch Androl 40:133-146. https://doi.org//10.3109//01485019808987936   DOI
4 Tse MC, Vong QP, Cheng CH, Chan KM (2002) PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II. Biochim Biophys Acta 1575:63-74. https://doi.org/10.1016//s0167-4781(02)00244-0   DOI
5 Lim K, Groen A, Molostvov G, Lu T, Lilley KS, Snead D, James S, Wilkinson IB, Ting S, Hsiao LL, Hiemstra TF, Zehnder D (2015) alpha-Klotho Expression in Human Tissues. J Clin Endocrinol Metab 100:E1308-E1318. https://doi.org/10.1210/jc.2015-1800   DOI
6 Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45-51. https://doi.org/10.1038/36285   DOI
7 Marciniak M, Chruscicka B, Lech T, Burnat G, Pilc A (2016) Expression of group III metabotropic glutamate receptors in the reproductive system of male mice. Reprod Fertil Dev 28:369-374. https://doi.org/10.1071//RD14132   DOI
8 Romanelli F, Valenca M, Conte D, Isidori A, Negro-Vilar A (1995) Arachidonic acid and its metabolites effects on testosterone production by rat Leydig cells. J Endocrinol Invest 18:186-193. https://doi.org/10.1007//BF03347801   DOI
9 Wang Y, Sun Z (2009) Current understanding of klotho. Ageing Res Rev 8:43-51. https://doi.org/10.1016/j. arr. 2008. 10. 002   DOI
10 Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91-99. https://doi.org/10.1247//csf.29.91   DOI
11 Painsipp E, Kofer MJ, Sinner F, Holzer P (2011) Prolonged depression-like behavior caused by immune challenge: influence of mouse strain and social environment. PLoS ONE 6:e20719. https://doi.org/10.1371//journal.pone.0020719   DOI
12 Martin SA, Dantzer R, Kelley KW, Woods JA (2014) Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice. Neuro-ImmunoModulation 21:52-63. https://doi.org/10.1159//000356144   DOI
13 Korpelainen EI, Karkkainen MJ, Tenhunen A, Lakso M, Rauvala H, Vierula M, Parvinen M, Alitalo K (1998) Overexpression of VEGF in testis and epididymis causes infertility in transgenic mice: evidence for nonendothelial targets for VEGF. J Cell Biol 143:1705-1712. https://doi.org/10.1083//jcb.143.6.1705   DOI
14 Nakamura M, Kobayashi T, Chang XT, Nagahama Y (1998) Gonadal sex differentiation in teleost fish. J Exp Zool 281:362-372. https://doi.org/10.1002//(SICI)1097-010X(19980 801)281:5<362::AID-JEZ3>3.0.CO;2-M   DOI
15 Stachowicz K, Bobula B, Tokarski K (2020) NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice. Brain Res 1734:146741. https://doi.org//10.1016/j.brainres.2020.146741   DOI
16 Maranesi M, Zerani M, Leonardi L, Pistilli A, Arruda-Alencar J, Stabile AM, Rende M, Castellini C, Petrucci L, Parillo F, Moura A, Boiti C (2015) Gene expression and localization of NGF and its cognate receptors NTRK1 and NGFR in the sex organs of male rabbits. Reprod Domest Anim 50:918-925. https://doi.org/10.1111//rda.12609   DOI
17 Wang SM, Han C, Bahk WM, Lee SJ, Patkar AA, Masand PS, Pae CU (2018) Addressing the side effects of contemporary antidepressant drugs: a comprehensive review. Chonnam Med J 54:101-112. https://doi.org/10.4068//cmj.2018.54.2.101   DOI
18 Casilla-Lennon MM, Meltzer-Brody S, Steiner AZ (2016) The effect of antidepressants on fertility. Am J Obserics Gynecol 215:314.e311-315. https://doi.org/10.1016/j.fertnstert.2014.12.023   DOI
19 Tanrikut C, Schlegel PN (2007) Antidepressant-associated changes in semen parameters. Urology 69:185-187. https://doi.org//10.1016/j.urology.2006.10.034   DOI
20 Schmidt JA, de Avila JM, McLean DJ (2007) Analysis of gene expression in bovine testis tissue prior to ectopic testis tissue xenografting and during the grafting period. Biol Reprod 76:1071-1080. https://doi.org/10.1095//biolreprod.106.058222   DOI
21 Reinecke M, Collet C (1998) The phylogeny of the insulin-like growth factors. Int Rev Cytol 183:1-94. https://doi.org/10.1016/S0074-7696(08)60142-4   DOI
22 Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141-162. https://doi.org/10.1006//dbio.2000.9975   DOI
23 Pomierny-Chamiolo L, Poleszak E, Pilc A, Nowak G (2010) NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Poland Pharmacol Rep 62:1186-1190. https://doi.org//10.1016//S1734-1140(10)70381-9   DOI
24 Palucha-Moniewiera A, Wieronska JM, Branski P, Burnat G, Chruscicka B, Pilc A (2013) Is the mGlu5 receptor a possible target for new antidepressant drugs? Pharmacol Rep 65:1506-1511. https://doi.org/10.1016//s1734-1140(13)71511-1   DOI
25 Tabecka-Lonczynska A, Mytych J, Solek P, Kowalewski MP, Koziorowski M (2019) Seasonal expression of insulin-like growth factor 1 (IGF-1), its receptor IGF-1R and klotho in testis and epididymis of the European bison (Bison bonasus, Linnaeus 1758). Theriogenology 126:199-205. https://doi.org/10.1016/j.theriogenology.2018.12.016   DOI
26 Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983-985. https://doi.org/10.1126//science.6823562   DOI
27 Perrot V, Moiseeva EB, Gozes Y, Chan SJ, Funkenstein B (2000) Insulin-like growth factor receptors and their ligands in gonads of a hermaphroditic species, the gilthead seabream (Sparus aurata): expression and cellular localization. Biol Reprod 63:229-241. https://doi.org/10.1095//biolreprod63.1.229   DOI
28 Lui WY, Lee WM, Cheng CY (2003) TGF-betas: their role in testicular function and Sertoli cell tight junction dynamics. Int J Androl 26:147-160. https://doi.org/10.1046/j.1365-2605.2003.00410.x   DOI
29 Wang X, Liang Y, Wang J, Wang M (2013) Effect of NS-398, a cyclooxygenase-2 selective inhibitor, on the cytotoxicity of cytotoxic T lymphocytes to ovarian carcinoma cells. Tumour Biol 34:1517-1522. https://doi.org/10.1007//s13277-013-0677-3   DOI
30 Muller N, Schwarz MJ (2008) COX-2 inhibition in schizophrenia and major depression. Curr Pharm Des 14:1452-1465. https://doi.org//10.2174//138161208784480243   DOI
31 Palaniyappan L, Insole L, Ferrier N (2009) Combining antidepressants: a review of evidence. Adv Psychiatr Treat 15:90-99. https://doi.org//10.1192//apt.bp.107.004820   DOI
32 Wang X, Walsh LP, Reinhart AJ, Stocco DM (2000) The role of arachidonic acid in steroidogenesis and steroidogenic acute regulatory (StAR) gene and protein expression. J Biol Chem 275:20204-20209. https://doi.org/10.1074//jbc.M003113200   DOI
33 Imai M, Ishikawa K, Matsukawa N, Kida I, Ohta J, Ikushima M, Chihara Y, Rui X, Rakugi H, Ogihara T (2004) Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression. Endocrine 25:229-234. https://doi.org/10.1385//ENDO:25:3:229   DOI
34 Hendrick V, Gitlin M, Althshuler L, Korenman S (2000) Antidepressant medications, mood and male fertility. Psychoneuroendocrinology 25:37-51. https://doi.org/10.1016//S0306-4530(99)00038-4   DOI
35 Nalbandian A, Dettin L, Dym M, Ravindranath N (2003) Expression of vascular endothelial growth factor receptors during male germ cell differentiation in the mouse. Biol Reprod 69:985-994. https://doi.org/10.1095//biolreprod.102.013581   DOI
36 Hendrick V, Gitlin M, Altshuler L, Korenman S (2000) Antidepressant medications, mood and male fertility. Psychoneuroendocrinology 25:37-51. https://doi.org/10.1016//s0306-4530(99)00038-4   DOI
37 Agrawal R, Jacobs H, Payne N, Conway G (2002) Concentration of vascular endothelial growth factor released by cultured human luteinized granulosa cells is higher in women with polycystic ovaries than in women with normal ovaries. Fertil Steril 78:1164-1169. https://doi.org/10.1016//S0015-0282(02) 04242-5   DOI
38 Griffeth RJ, Bianda V, Nef S (2014) The emerging role of insulinlike growth factors in testis development and function. Basic Clin Androl 24:12. https://doi.org/10.1186//2051-4190-24-12   DOI
39 Moraga PF, Llanos MN, Ronco AM (1997) Arachidonic acid release from rat Leydig cells depends on the presence of luteinizing hormone/human chorionic gonadotrophin receptors. J Endocrinol 154:201-209. https://doi.org/10.1677//joe.0.1540201   DOI
40 Wang X, Dyson MT, Jo Y, Stocco DM (2003) Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology 144:3368-3375. https://doi.org/10.1210//en.2002-0081   DOI
41 Marks DM, Shah MJ, Patkar AA, Masand PS, Park GY, Pae CU (2009) Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol 7:331-336. https://doi.org/10.2174//157015909790031201   DOI
42 Radhakrishnan B, Oke BO, Papadopoulos V, DiAugustine RP, Suarez-Quian CA (1992) Characterization of epidermal growth factor in mouse testis. Endocrinology 131:3091-3099. https://doi.org//10.1210//endo.131.6.1446643   DOI
43 Brown LF, Yeo KT, Berse B, Morgentaler A, Dvorak HF, Rosen S (1995) Vascular permeability factor (vascular endothelial growth factor) is strongly expressed in the normal male genital tract and is present in substantial quantities in semen. J Urol 154:576-579. https://doi.org/10.1016//S0022-5347(01)67114-3   DOI
44 Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U (1998) Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 95:11709-11714. https://doi.org/10.1073//pnas.95.20.11709   DOI
45 Luo H, Kimura K, Aoki M, Hirako M (2002) Vascular endothelial growth factor (VEGF) promotes the early development of bovine embryo in the presence of cumulus cells. J Vet Med Sci 64:967-971. https://doi.org/10.1292//jvms.64.967   DOI
46 Obermair A, Obruca A, Pohl M, Kaider A, Vales A, Leodolter S, Wojta J, Feichtinger W (1999) Vascular endothelial growth factor and its receptors in male fertility. Fertil Steril 72:269-275. https://doi.org//10.1016//s0015-0282(99)00234-4   DOI
47 Vinas J, Piferrer F (2008) Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol Reprod 79:738-747. https://doi.org/10.1095//biolreprod.108.069708   DOI
48 Greene MW, Chen TT (1997) Temporal expression pattern of insulin-like growth factor mRNA during embryonic development in a teleost, rainbow trout (Onchorynchus mykiss). Mol Mar Biol Biotechnol 6:144-151 (PMID: 9200841)
49 Gonzalez CR, Matzkin ME, Frungieri MB, Terradas C, Ponzio R, Puigdomenech E, Levalle O, Calandra RS, Gonzalez-Calvar SI (2010) Expression of the TGF-beta1 system in human testicular pathologies. Reprod Biol Endocrinol 8:148. https://doi.org//10.1186//1477-7827-8-148   DOI
50 Haigh JJ (2008) Role of VEGF in organogenesis. Organogenesis 4:247-256. https://doi.org/10.4161//org.4.4.7415   DOI
51 Kassab M, Abd-Elmaksoud A, Ali MA (2007) Localization of the epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) in the bovine testis. J Mol Histol 38:207-214. https://doi.org/10.1007//s10735-007-9089-2   DOI
52 He J, Dong C, You R, Zhu Z, Lv L, Smith GW (2009) Localization of epidermal growth factor (EGF) and its receptor (EGFR) during postnatal testis development in the alpaca (Lama pacos). Anim Reprod Sci 116:155-161. https://doi.org/10.1016/j.anireprosci.2009.01.002   DOI
53 Pan Y, Cui Y, Yu S, Zhang Q, Fan J, Abdul Rasheed B, Yang K (2014) The expression of epidermal growth factor (EGF) and its receptor (EGFR) during post-natal testes development in the yak. Reprod Domest Anim 49:970-976. https://doi.org/10.1111//rda.12416   DOI
54 Wong RW, Kwan RW, Mak PH, Mak KK, Sham MH, Chan SY (2000) Overexpression of epidermal growth factor induced hypospermatogenesis in transgenic mice. J Biol Chem 275:18297-18301. https://doi.org/10.1074//jbc.M001965200   DOI
55 Leone F, Lofaro D, Gigliotti P, Perri A, Vizza D, Toteda G, Lupinacci S, Armentano F, Papalia T, Bonofiglio R (2014) Soluble Klotho levels in adult renal transplant recipients are modulated by recombinant human erythropoietin. J Nephrol 27:577-585. https://doi.org//10.1007//s40620-014-0089-5   DOI
56 Sawada J, Itakura A, Tanaka A, Furusaka T, Matsuda H (2000) Nerve growth factor functions as a chemoattractant for mast cells through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Blood 95:2052-2058. https://doi.org/10.1182//blood.V95.6.2052   DOI
57 Ayson FG, de Jesus EG, Moriyama S, Hyodo S, Funkenstein B, Gertler A, Kawauchi H (2002) Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus. Gen Comp Endocrinol 126:165-174. https://doi.org/10.1006/gcen.2002.7788   DOI
58 Shiraishi K, Matsuyama H (2012) Local expression of epidermal growth factor-like growth factors in human testis and its role in spermatogenesis. J Androl 33:66-73. https://doi.org/10.2164//jandrol.110.011981   DOI
59 Koh N, Fujimori T, Nishiguchi S, Tamori A, Shiomi S, Nakatani T, Sugimura K, Kishimoto T, Kinoshita S, Kuroki T, Nabeshima Y (2001) Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 280:1015-1020. https://doi.org/10.1006//bbrc.2000.4226   DOI
60 Chang WY, Kulp SK, Sugimoto Y, Canatan H, Shidaifat F, Inpanbutr N, Lin YC (1996) Detection of keratinocyte growth factor (KGF) messenger ribonucleic acid and immunolocalization of KGF in the canine testis. Endocrine 5:247-255. https://doi.org/10.1007//BF02739057   DOI
61 Skaper SD (2017) Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 151:1-15. https://doi.org/10.1111//imm.12717   DOI
62 Cupp AS, Kim GH, Skinner MK (2000) Expression and action of neurotropin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol Reprod 63:1617-1628. https://doi.org/10.1095//biolreprod63.6.1617   DOI
63 Wang H, Dong Y, Chen W, Hei J, Dong C (2011) Expression and localization of nerve growth factor (NGF) in the testis of alpaca (llama pacos). Folia Histochem Cytobiol 49:55-61. https://doi.org//10.5603//FHC.2011.0009   DOI