Browse > Article
http://dx.doi.org/10.1007/s43188-021-00101-5

A review on the pharmacokinetic properties and toxicity considerations for chloroquine and hydroxychloroquine to potentially treat coronavirus patients  

Askarian, Fatemeh (Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences)
Firoozi, Zahra (Department of Medical Genetics, School of Medicine, Kerman University of Medical Sciences)
Ebadollahi‑Natanzi, Alireza (Medicinal Plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO))
Bahrami, Solmaz (Department of Institutional Research, Westclif University)
Rahimi, Hamid‑Reza (Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences)
Publication Information
Toxicological Research / v.38, no.2, 2022 , pp. 137-148 More about this Journal
Abstract
The SARS-CoV-2 virus, caused a novel emerged coronavirus disease, is growing rapidly worldwide. Few studies have evaluated the efficacy and safety of Chloroquine (CQ), an old antimalarial drug, and Hydroxychloroquine (HCQ) in the treatment of COVID-19 infection. HCQ is derived from CQ by adding a hydroxyl group into it and is a less toxic derivative of CQ for the treatment of COVID-19 infection because it is more soluble. This article summarizes pharmacokinetic properties and toxicity considerations for CQ and HCQ, drug interactions, and their potential efficacy against COVID-19. The authors also look at the biochemistry changes and clinical uses of CQ and HCQ, and supportive treatments following toxicity occurs. It was believed that CQ and HCQ may provide few benefits to COVID-19 patients. A number of factors should be considered to keep the drug safe, such as dose, in vivo animal toxicological findings, and gathering of metabolites in plasma and/or tissues. The main conclusion of this review is that CQ and HCQ with considered to their ADMET properties has major shortcomings and fully irresponsible.
Keywords
Chloroquine; COVID-19; Metabolism; Toxicity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schaer CA, Laczko E, Schoedon G, Schaer DJ, Vallelian F (2013) Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent. Oxid Med Cell Longev 2013:870472. https://doi.org/10.1155/2013/870472   DOI
2 Singhi S, Singhi P, Singh M (1979) Extrapyrbmidal syndrome following chloroquine therapy. Indian J Pediatr 46:58-60. https://doi.org/10.1007/BF02811499   DOI
3 Wang C, Fortin P, Li Y, Panaritis T, Gans M, Esdaile J (1999) Discontinuation of antimalarial drugs in systemic lupus erythematosus. J Rheumatol 26:808-815.PMID: 10229401
4 Seckin U, Ozoran K, Ikinciogullari A, Borman P, Bostan EE (2000) Hydroxychloroquineototoxicity in a patient with rheumatoid arthritis. Rheumatol Int 19:203-204. https://doi.org/10.1007/s002960000054   DOI
5 Raoult D, Houpikian P, Dupont HT, Riss JM, Arditi-Djiane J, Brouqui P (1999) Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 159:167-173. https://doi.org/10.1001/archi nte.159.2.167   DOI
6 Boulos A, Rolain J-M, Raoult D (2004) Antibiotic susceptibility of Tropheryma whipplei in MRC5 cells. Antimicrob Agents Chemother 48:747-752. https://doi.org/10.1128/AAC.48.3.747-752.2004   DOI
7 Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E et al (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35:223-232. https://doi.org/10.1097/00126334-200403010-00002   DOI
8 Vandekerckhove S, D'hooghe M (2015) Quinoline-based antimalarial hybrid compounds. Bioorg Med Chem 23:5098-5119. https://doi.org/10.1016/j.bmc.2014.12.018   DOI
9 Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG et al (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2:69 https://doi.org/10.1186/1743-422X-2-69   DOI
10 Devaux CA, Rolain J-M, Colson P, Raoult D (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 55:105938. https://doi.org/10.1016/j. ijant imicag.2020.105938   DOI
11 McChesney EW (1983) Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 75:11-18. https://doi.org/10.1016/0002-9343(83)91265-2   DOI
12 Yogasundaram H, Hung W, Paterson ID, Sergi C, Oudit GY (2018) Chloroquine-induced cardiomyopathy: a reversible cause of heart failure. ESC Heart Fail 5:372-375. https://doi.org/10.1002/ehf2.12276   DOI
13 Yam J, Kwok A (2006) Ocular toxicity of hydroxychloroquine. Hong Kong Med J 12:294. PMID: 16912357
14 Marmor MF, Kellner U, Lai TY, Lyons JS, Mieler WF (2011) Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 118:415-422. https://doi.org/10.1016/j.ophtha.2010.11.017   DOI
15 Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ et al (2014) Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob Agents Chemother 58:3354-3359. https://doi.org/10.1128/AAC.02794-13   DOI
16 Olatunde Farombi E, Shyntum YY, Emerole GO (2003) Influence of chloroquine treatment and Plasmodium falciparum malaria infection on some enzymatic and non-enzymatic antioxidant defense indices in humans. Drug Chem Toxicol 26:59-71. https://doi.org/10.1081/DCT-120017558   DOI
17 Omotosho O, Adebiyi M, Oyeyemi M (2014) Comparative study of the haematology and serum biochemistry of male wistar rats treated with chloroquine and artesunate. J Physiol Pharmacol Adv 4:413-419. https://doi.org/10.5455/jppa.20140827112119   DOI
18 Powrie J, Smith G, Shojaee-Moradie F, Sonksen P, Jones R (1991) Mode of action of chloroquine in patients with noninsulin-dependent diabetes mellitus. Am J Physiol Endocrinol Metab 260:E897-E904. https://doi.org/10.1152/ajpendo.1991.260.6E897   DOI
19 Yogasundaram H, Putko BN, Tien J, Paterson DI, Cujec B, Ringrose J et al (2014) Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can J Cardiol 30:1706-1715. https://doi.org/10.1016/j.cjca.2014.08.016   DOI
20 Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF (2016) Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology 123:1386-1394. https://doi.org/10.1016/j.ophtha.2016.01.058   DOI
21 Han Y, Pham HT, Xu H, Quan Y, Mesplede T (2019) Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J Med Virol 91:1182-1190. https://doi.org/10.1002/jmv.25440   DOI
22 Kolars JC, Schmiedlin-Ren P, Schuetz JD, Fang C, Watkins PB (1992) Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Investig 90:1871-1878. https://doi.org/10.1172/JCI116064   DOI
23 Thorogood N, Atwal S, Mills W, Jenner M, Lewis D, Cavenagh J et al (2007) The risk of antimalarials in patients with renal failure. Postgrad Med J 83:8. https://doi.org/10.1136/pgmj.2007.063735   DOI
24 Mohan D, Mohandas E, Rajat R (1981) Chloroquine psychosis: a chemical psychosis? J Natl Med Assoc 73:1073. PMID: 7310924
25 Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH et al (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535-538. https://doi.org/10.1038/nature12711   DOI
26 Izmirly PM, Costedoat-Chalumeau N, Pisoni CN, Khamashta MA, Kim MY, Saxena A et al (2012) Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti- SSA/Ro-antibody-associated cardiac manifestations of neonatal lupus. Circulation 126:76-82. https://doi.org/10.1161/CIRCULATIONAHA.111.089268   DOI
27 Zhao X, Jiang Y, Zhao Y, Xi H, Liu C, Qu F et al (2020) Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur J Clin Microbiol Infect Dis 23:1-12. https://doi.org/10.1007/s10096-020-03897-6   DOI
28 Saghir SAM, AlGabri NA, Alagawany MM, Attia YA, Alyileili SR, Elnesr SS, Shafi ME, Al-shargi OYA, Al-balagi N, Alwajeeh AS, Alsalahi OS, Patra AK, Khafaga AF, Negida A, Noreldin A, Al-Amarat W, Almaiman AA, El-Tarabily KA, Abd El-Hack ME (2021) Chloroquine and hydroxychloroquine for the prevention and treatment of COVID-19: a fiction, hope or hype? An updated review. Ther Clin Risk Manag 17:371-387. https://doi.org/10.2147/TCRM.S301817   DOI
29 Wang L-F, Shi Z, Zhang S, Field H, Daszak P, Eaton BT (2006) Review of bats and SARS. Emerg Infect Dis 12:1834. https://doi.org/10.3201/eid1212.060401   DOI
30 Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265-269. https://doi.org/10.1038/s41586-020-2008-3   DOI
31 Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323(13):1239-1242. https://doi.org/10.1001/jama.2020.2648   DOI
32 Organization WH (2020) Coronavirus disease 2019 (COVID-19): situation report. WHO, p 209
33 Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052   DOI
34 Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528-542. https://doi.org/10.1038/nrc.2017.53   DOI
35 Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli M et al (2005) Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med 202:817-828. https://doi.org/10.1084/jem.20051106   DOI
36 Tiberghien F, Loor F (1996) Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs 7:568-578. https://doi.org/10.1097/00001813-199607000-00012   DOI
37 Furst DE (1996) Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 5:S11-S15. PMID: 8803904   DOI
38 Ahmed MH, Ashton N, Balment RJ (2003) Renal function in a rat model of analgesic nephropathy: effect of chloroquine. J Pharmacol Exp Ther 305:123-130. https://doi.org/10.1124/jpet.102.047233   DOI
39 Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420-422. https://doi.org/10.1016/S2213-2600(20)30076-X   DOI
40 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5   DOI
41 Yang Y-p, Hu L-f, Zheng H-f et al (2013) Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol Sin 34:625-635. https://doi.org/10.1038/aps.2013.5   DOI
42 Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W, Wang M (2020) Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov 6:16. https://doi.org/10.1038/s41421-020-0156-0   DOI
43 Schrezenmeier E, Dorner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16:1-12. https://doi.org/10.1038/s41584-020-0372-x   DOI
44 Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A (2006) New insights into the antiviral effects of chloroquine. Lancet Infect Dis 6:67-69. https://doi.org/10.1016/S1473-3099(06)70361-9   DOI
45 Seitz M, Valbracht J, Quach J, Lotz M (2003) Gold sodium thiomalate and chloroquine inhibit cytokine production in monocytic THP-1 cells through distinct transcriptional and posttranslational mechanisms. J Clin Immunol 23:477-484. https://doi.org/10.1023/B:JOCI.0000010424.41475.17   DOI
46 Brumlik MJ, Nkhoma S, Kious MJ, Thompson GR 3rd, Patterson TF, Siekierka JJ, Anderson TJ, Curiel TJ (2011) Human p38 mitogen-activated protein kinase inhibitor drugs inhibit Plasmodium falciparum replication. Exp Parasitol 128:170-175. https://doi.org/10.1016/j.exppara.2011.02.016   DOI
47 Grundmann M, Mikulikova I, Vrublovsky P (1971) Tissue distribution of subcutaneously administered chloroquine in the rat. Arzneimittelforschung 21:573. PMID: 5108164
48 Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (2020) A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 27:279-283. https://doi.org/10.1016/j.jcrc.2020.03.005   DOI
49 Lisney AR, Szelinski F, Reiter K, Burmester GR, Rose T, Dorner T (2017) High maternal expression of SIGLEC1 on monocytes as a surrogate marker of a type I interferon signature is a risk factor for the development of autoimmune congenital heart block. Ann Rheum Dis 76:1476-1480. https://doi.org/10.1136/annrheumdis-2016-210927   DOI
50 Lacroix I, Benevent J, Damase-Michel C (2020) Chloroquine and hydroxychloroquine during pregnancy: what do we know? Therapie 75:384-385. https://doi.org/10.1016/j.jinf.2020.05.004   DOI
51 Huang M, Tang T, Pang P, Li M, Ma R, Lu J et al (2020) Treating COVID-19 with chloroquine. J Mol Cell Biol 12:322-325. https://doi.org/10.1093/jmcb/mjaa014   DOI
52 Bessiere F, Roccia H, Deliniere A, Charriere R, Chevalier P, Argaud L et al (2020) Assessment of QT intervals in a case series of patients with Coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care Unit. JAMA Cardiol 5:1067-1069. https://doi.org/10.1001/jamac ardio.2020.1787   DOI
53 Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M et al (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30:269-271. https://doi.org/10.1038/s41422-020-0282-0   DOI
54 Mingo RM, Simmons JA, Shoemaker CJ et al (2015) Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J Virol 89:2931-2943. https://doi.org/10.1128/JVI.03398-14   DOI
55 McChesney E-W, Conway W, Banks W, Rogers J, Shekosky J, Grace A et al (1966) Studies of the metabolism of some compounds of the 4-amino-7-chloroquinoline series. J Pharmacol Exp Ther 151:482-493. PMID: 4957157
56 Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L et al (2020) A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) 49:215-219. https://doi.org/10.3785/j.issn.1008-9292.2020.03.03   DOI
57 Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ et al (2020) Risk of QT interval prolongation associated with use of hydroxychloroquine with or without concomitant azithromycin among hospitalized patients testing positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 5:1036-1041. PMID: 32936252   DOI
58 Mackenzie AH (1983) Pharmacologic actions of 4-aminoquinoline compounds. Am J Med 75:5-10. https://doi.org/10.1016/0002-9343(83)91264-0   DOI
59 Wetsteyn J, De Vries P, Oosterhuis B, Van Boxtel C (1995) The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br J Clin Pharmacol 39:696-699. https://doi.org/10.1111/j.1365-2125.1995.tb05731.x   DOI
60 Costedoat-Chalumeau N, Dunogue B, Leroux G, Morel N, Jallouli M, Le Guern V et al (2015) A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy Immunol 49:317-326. https://doi.org/10.1007/s12016-015-8469-8   DOI
61 Gay B, Bernard E, Solignat M, Chazal N, Devaux C, Briant L (2012) pH-dependent entry of chikungunya virus into Aedes albopictus cells. Infect Genet Evol 12:1275-1281. https://doi.org/10.1016/j.meegid.2012.02.003   DOI
62 Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953-1966. https://doi.org/10.1056/NEJMoa030781   DOI
63 Yu IT-S, Qiu H, Tse LA, Wong TW (2014) Severe acute respiratory syndrome beyond Amoy Gardens: completing the incomplete legacy. Clin Infect Dis 58:683-686. https://doi.org/10.1093/cid/cit797   DOI
64 Li C, Zhu X, Ji X, Quanquin N, Deng Y-Q, Tian M et al (2017) Chloroquine, a FDA-approved drug, prevents Zika virus infection and its associated congenital microcephaly in mice. EBio-Medicine 24:189-194. https://doi.org/10.1016/j.ebiom.2017.09.034   DOI
65 Tsiang H, Superti F (1984) Ammonium chloride and chloroquine inhibit rabies virus infection in neuroblastoma cells. Adv Virol 81:377-382. https://doi.org/10.1007/BF01310010   DOI
66 Kwiek JJ, Haystead TA, Rudolph J (2004) Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry 43:4538-4547. https://doi.org/10.1021/bi035923w   DOI
67 Olofsson S, Kumlin U, Dimock K, Arnberg N (2005) Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infect Dis 5(3):184-188. https://doi.org/10.1016/S1473-3099(05)01311-3   DOI
68 Zhuang M-W, Cheng Y, Zhang J, Jiang X-M, Wang L, Deng J, Wang P-H (2020) Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection. J Med Virol 92:2693-2701. https://doi.org/10.1002/jmv.26139   DOI
69 Savarino A, Gennero L, Sperber K, Boelaert J (2001) The anti-HIV-1 activity of chloroquine. J Clin Virol 20:131-135. https://doi.org/10.1016/S1386-6532(00)00139-6   DOI
70 Seferovic P, Ristic A, Maksimovic R, Simeunovic D, Ristic G, Radovanovic G et al (2006) Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology 45:iv39-iv42. https://doi.org/10.1093/rheumatology/kel315   DOI
71 Bhatia M (1991) Chloroquine-induced psychiatric complications. Br J Psychiatry 159:735. https://doi.org/10.1192/bjp.159.5.735   DOI
72 Das P, Rai A, Chopra A, Philbrick K (2014) Psychosis likely induced by hydroxychloroquine in a patient with chronic Q fever: a case report and clinically relevant review of pharmacology. Psychosomatics 55:409-413. https://doi.org/10.1016/j.psym.2013.06.017   DOI
73 Hsu W, Chiu N, Huang S (2011) Hydroxychloroquine-induced acute psychosis in a systemic lupus erythematosus female. Acta Neuropsychiatr 23:318-319. https://doi.org/10.1111/j.1601-5215.2011.00575.x   DOI
74 de Olano J, Howland MA, Su MK, Hoffman RS, Biary R (2019) Toxicokinetics of hydroxychloroquine following a massive overdose. Am J Emerg Med 37:2264.e5-2264.e8. https://doi.org/10.1016/j.ajem.2019.158387   DOI
75 Hughes JT, Esiri M, Oxbury J, Whitty C (1971) Chloroquine myopathy. QJM Int J Med 40:85-93. PMID: 4253656
76 Sanghvi L, Mathur B (1965) Electrocardiogram after chloroquine and emetine. Circulation 32:281-289. https://doi.org/10.1161/01.CIR.32.2.281   DOI
77 Ooi EE, Chew JSW, Loh JP, Chua RC (2006) In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 3:39. https://doi.org/10.1186/1743-422X-3-39   DOI
78 Riou B, Barriot P, Rimailho A, Baud FJ (1988) Treatment of severe chloroquine poisoning. N Engl J Med 318:1-6. https://doi.org/10.1056/NEJM198801073180101   DOI
79 Juurlink DN (2020) Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ 192:E450-E453. https://doi.org/10.1503/cmaj.200528   DOI
80 Maxwell NM, Nevin RL, Stahl S, Block J, Shugarts S, Wu AH et al (2015) Prolonged neuropsychiatric effects following management of chloroquine intoxication with psychotropic polypharmacy. Clin Case Rep 3:379. https://doi.org/10.1002/ccr3.238   DOI
81 Kim K-A, Park J-Y, Lee J-S, Lim S (2003) Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharmacal Res 26:631-637. https://doi.org/10.1007/BF02976712   DOI
82 Tulpule A, Krishnaswamy K (1982) Effect of food on bioavailability of chloroquine. Eur J Clin Pharmacol 23:271-273. https://doi.org/10.1007/BF00547567   DOI
83 Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B et al (2010) A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis 4:e785. https://doi.org/10.1371/journ al. pntd. 00007 85   DOI
84 Giovanella F, Ferreira GK, Pra SDD, Carvalho-Silva M, Gomes LM, Scaini G et al (2015) Effects of primaquine and chloroquine on oxidative stress parameters in rats. An Acad Bras Cienc 87:1487-1496.https://doi.org/10.1590/0001-3765201520140637   DOI
85 Shadnia S, Ebadollahi-Natanzi A, Ahmadzadeh S, Karami- Mohajeri S, Pourshojaei Y, Rahimi HR (2018) Delayed death following paraquat poisoning: three case reports and a literature review. Toxicol Res 7:745-753. https://doi.org/10.1039/c8tx00120k.3   DOI
86 Reghunathan R, Jayapal M, Hsu L-Y, Chng H-H, Tai D, Leung BP et al (2005) Expression profile of immune response genes in patients with severe acute respiratory syndrome. BMC Immunol 6:2. https://doi.org/10.1186/1471-2172-6-2   DOI
87 Ofori-Adjei D, Ericsson O (1985) Chloroquine in nail clippings. Lancet 2:331. https://doi.org/10.1016/S0140-6736(85)90377-0   DOI
88 Briant L, Robert-Hebmann V, Acquaviva C, Pelchen-Matthews A, Marsh M, Devaux C (1998) The protein tyrosine kinase p56 lck is required for triggering NF-κB activation upon interaction of human immunodeficiency virus type 1 envelope glycoprotein gp120 with cell surface CD4. J Virol 72:6207-6214. https://doi.org/10.1128/JVI.72.7.6207-6214.1998   DOI
89 Gustafsson L, Lindstrom B, Grahnen A, Alvan G (1987) Chloroquine excretion following malaria prophylaxis. Br J Clin Pharmacol 24:221-224. https://doi.org/10.1111/j.1365-2125.1987.tb03165.x   DOI
90 Ette EI, Essien EE, Thomas WO, Brown-Awala EA (1989) Pharmacokinetics of chloroquine and some of its metabolites in healthy volunteers: a single dose study. J Clin Pharmacol 29:457-462. https://doi.org/10.1128/AAC.01269-09   DOI
91 Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770-776. https://doi.org/10.1086/322858   DOI
92 Musabayane C, Cooper R, Osim E, Balment R (2000) Renal electrolyte and fluid handling in the rat following chloroquine and/or ethanol administration. Gen Pharmacol Vasc Syst 34:43-51. https://doi.org/10.1016/S0306-3623(00)00045-8   DOI
93 Musabayane CT, Cooper RG, Rao PVVP, Balment RJ (2000) Effects of ethanol on the changes in renal fluid and electrolyte handling and kidney morphology induced by long-term chloroquine administration to rats. Alcohol 22:129-138. https://doi.org/10.1016/S0741-8329(00)00110-5   DOI
94 Melles RB, Marmor MF (2014) The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 132:1453-1460. https://doi.org/10.1001/jamaophthalmol.2014.3459   DOI
95 Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163-189. https://doi.org/10.1016/j.ijpara.2003.09.011   DOI
96 Wallace DJ, Trobe J (2020) Antimalarial drugs in the treatment of rheumatic disease. UpToDate, Waltham
97 Ducharme J, Farinotti R (1996) Clinical pharmacokinetics and metabolism of chloroquine. Clin Pharmacokinet 31:257-274. https://doi.org/10.2165/00003 088-19963 1040-00003   DOI
98 Frisk-Holmberg M, Bergqvist Y, Englund U (1983) Chloroquine intoxication. Br J Clin Pharmacol 15:502. https://doi.org/10.1111/j.1365-2125.1983.tb01540.x   DOI
99 Yan Y, Zou Z, Sun Y, Li X, Xu K-F, Wei Y et al (2013) Antimalaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res 23:300-302. https://doi.org/10.1038/cr.2012.165   DOI
100 Roques P, Thiberville S-D, Dupuis-Maguiraga L, Lum F-M, Labadie K, Martinon F et al (2018) Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses 10:268. https://doi.org/10.3390/v10050268   DOI
101 Akpovwa H (2016) Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 34:191-196. https://doi.org/10.1002/cbf.3182   DOI
102 Peymani P, Yeganeh B, Sabour S, Geramizadeh B, Fattahi MR, Keyvani H et al (2016) New use of an old drug: chloroquine reduces viral and ALT levels in HCV non-responders (a randomized, triple-blind, placebo-controlled pilot trial). Can J Physiol Pharmacol 94:613-619. https://doi.org/10.1139/cjpp-2015-0507   DOI
103 Gao J, Tian Z, Yang X (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14:72-73. https://doi.org/10.5582/BST.2020.01047   DOI
104 Plantone D, Koudriavtseva T (2018) Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig 38:653-671. https://doi.org/10.1007/s40261-018-0656-y   DOI
105 Sriboonvorakul N, Ghose A, Hassan MMU, Hossain MA, Faiz MA, Pukrittayakamee S et al (2018) Acidosis and acute kidney injury in severe malaria. Malar J 17:128. https://doi.org/10.1186/s12936-018-2274-9   DOI
106 Cabral RTS, Klumb EM, Couto MINN, Carneiro S (2019) Evaluation of toxic retinopathy caused by antimalarial medications with spectral domain optical coherence tomography. Arq Bras Oftalmol 82:12-17. https://doi.org/10.5935/0004-2749.20190002   DOI
107 Jorge A, Ung C, Young LH, Melles RB, Choi HK (2018) Hydroxychloroquine retinopathy-implications of research advances for rheumatology care. Nat Rev Rheumatol 14:693-703. https://doi.org/10.1038/s41584-018-0111-8   DOI
108 Page F (1951) Treatment of lupus erythematosus with mepacrine. Lancet 258:755-758. https://doi.org/10.1016/S0140-6736(51)91643-1   DOI
109 Abdulaziz N, Shah AR, McCune WJ (2018) Hydroxychloroquine: balancing the need to maintain therapeutic levels with ocular safety an update. Curr Opin Rheumatol 30:249-255. https://doi.org/10.1097/BOR.0000000000000500   DOI
110 Lee JY, Vinayagamoorthy N, Han K, Kwok SK, Ju JH, Park KS et al (2016) Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol 68:184-190. https://doi.org/10.1002/art.39402   DOI
111 Leppert W (2011) CYP2D6 in the metabolism of opioids for mild to moderate pain. Pharmacology 87:274-285. https://doi.org/10.1159/000326085   DOI
112 Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J (2003) In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 31:748-754. https://doi.org/10.1124/dmd.31.6.748   DOI
113 Back DJ, Purba HS, Staiger C, Orme MLE, Breckenridge AM (1983) Inhibition of drug metabolism by the antimalarial drugs chloroquine and primaquine in the rat. Biochem Pharmacol 32:257-263. https://doi.org/10.1007/BF03188819   DOI
114 Rainsford K, Parke AL, Clifford-Rashotte M, Kean W (2015) Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 23:231-269. https://doi.org/10.1007/s10787-015-0239-y   DOI
115 Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (2004) In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 323:264-268. https://doi.org/10.1016/j.bbrc.2004.08.085   DOI
116 Tan YW, Yam WK, Sun J, Chu JJH (2018) An evaluation of chloroquine as a broad-acting antiviral against hand, foot and mouth disease. Antivir Res 149:143-149. https://doi.org/10.1016/j.antiviral.2017.11.017   DOI
117 Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270-273. https://doi.org/10.1038/s41586-020-2012-7   DOI
118 Tse EG, Korsik M, Todd MH (2019) The past, present and future of anti-malarial medicines. Malar J 18:93. https://doi.org/10.1186/s12936-019-2724-z   DOI
119 Murugavel P, Pari L (2004) Attenuation of chloroquine-induced renal damage by α-lipoic acid: possible antioxidant mechanism. Ren Fail 26:517-524. https://doi.org/10.1081/JDI-200031761   DOI
120 Boyle PJ, Justice K, Krentz AJ, Nagy RJ, Schade DS (1993) Octreotide reverses hyperinsulinemia and prevents hypoglycemia induced by sulfonylurea overdoses. J Clin Endocrinol Metab 76:752-756. https://doi.org/10.1210/jcem.76.3.8445035   DOI
121 Paton NI, Lee L, Xu Y, Ooi EE, Cheung YB, Archuleta S et al (2011) Chloroquine for influenza prevention: a randomised, double- blind, placebo controlled trial. Lancet Infect Dis 11:677-683. https://doi.org/10.1016/s1473-3099(11)70065-2   DOI
122 Gautret P, Lagier J-C, Parola P, Meddeb L, Mailhe M, Doudier B et al (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 56:105949. https://doi.org/10.1016/j.ijantimicag.2020.105949   DOI
123 Jaeger A, Sauder P, Kopferschmitt J, Flesch F (1987) Clinical features and management of poisoning due to antimalarial drugs. Med Toxicol Adverse Drug Exp 2:242-273. https://doi.org/10.1007/BF03259868   DOI
124 Toennesmann E, Stroehmann I, Kandolf R, Wolburg H, Strach K, Musshoff F et al (2012) Cardiomyopathy caused by longterm treatment with chloroquine: a rare disease, or a rare diagnosis? J Rheumatol 39:1099-1103. https://doi.org/10.3899/jrheum.110959   DOI
125 Cervera A, Espinosa G, Cervera R, Font J, Ingelmo M (2001) Cardiac toxicity secondary to long term treatment with chloroquine. Ann Rheum Dis 60:301-302. https://doi.org/10.1136/ard.60.3.301   DOI
126 Chauhan A, Tikoo A (2015) The enigma of the clandestine association between chloroquine and HIV-1 infection. HIV Med 16:585-590. https://doi.org/10.1111/hiv.12295   DOI
127 Kim A, Sparks J, Liew J, Putman M, Berenbaum F, Duarte-Garcia A, COVID-19 Global Rheumatology Alliance et al (2020) A rush to judgment? Rapid reporting and dissemination of results and its consequences regarding the use of hydroxychloroquine for COVID-19. Ann Intern Med 30:M20-1223. https://doi.org/10.7326/M20-1223   DOI
128 Clemessy J-L, Taboulet P, Hoffman JR, Hantson P, Barriot P, Bismuth C et al (1996) Treatment of acute chloroquine poisoning: a 5-year experience. Crit Care Med 24:1189-1195. https://doi.org/10.1097/00003246-199607000-00021   DOI
129 Pastick KA, Okafor EC, Wang F, Lofgren SM, Skipper CP, Nicol MR, Pullen MF, Rajasingham R, McDonald EG, Lee TC, Schwartz IS (2020) Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect Dis 7:ofaa130. https://doi.org/10.1093/ofid/ofaa130   DOI
130 Fossa AA, Wisialowski T, Duncan JN, Deng S, Dunne M (2007) Azithromycin/chloroquine combination does not increase cardiac instability despite an increase in monophasic action potential duration in the anesthetized guinea pig. Am J Trop Med Hyg 77:929-938. PMID: 17984356   DOI
131 Raoult D, Drancourt M, Vestris G (1990) Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Agents Chemother 34:1512-1514. https://doi.org/10.1128/AAC.34.8.1512   DOI
132 Rolain J-M, Colson P, Raoult D (2007) Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 30:297-308. https://doi.org/10.1016/j.ijantimicag.2007.05.015   DOI
133 Varki A (1997) Sialic acids as ligands in recognition phenomena. FASEB J 11(4):248-255. https://doi.org/10.1096/fasebj.11.4.9068613   DOI
134 Ladipo G, Essien E, Andy J (1983) Complete heart block in chronic chloroquine poisoning. Int J Cardiol 4:198-200. https://doi.org/10.1016/0167-5273(83)90136-5   DOI
135 Essien E, Ette E (1986) Effects of chloroquine and didesethylchloroquine on rabbit myocardium and mitochondria. J Pharm Pharmacol 38:543-546. https://doi.org/10.1111/j.2042-7158.1986.tb04620.x   DOI
136 Bourrie M, Meunier V, Berger Y, Fabre G (1996) Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J Pharmacol Exp Ther 277:321-332. PMID: 8613937
137 McChesney E, Fasco M, Banks W, Kersch TB (1967) The metabolism of chloroquine in man during and after repeated oral dosage. J Pharmacol Exp Ther 158:323-331. PMID: 6065153
138 Somer M, Kallio J, Pesonen U, Pyykko K, Huupponen R, Scheinin M (2000) Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br J Clin Pharmacol 49:549-554. https://doi.org/10.1046/j.1365-2125.2000.00197.x   DOI
139 Marmor MF, Hu J (2014) Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol 132:1105-1112. https://doi.org/10.1001/jamaophthalmol.2014.1099   DOI
140 Nampoory N, Nessim J, Gupta RK, Johny KV (1992) Drug interaction of chloroquine with ciclosporin. Nephron 62:108-109. https://doi.org/10.1159/000187007   DOI
141 Britton W, Kevau I (1978) Intentional chloroquine overdosage. Med J Aust 2:407-410. https://doi.org/10.5694/j.1326-5377.1978.tb76816.x   DOI
142 Augustijns P, Geusens P, Verbeke N (1992) Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. Eur J Clin Pharmacol 42:429-433. https://doi.org/10.1007/BF00280130   DOI
143 Frisk-Holmberg M, Bergqvist Y, Termond E, Domeij-Nyberg B (1984) The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol 26:521-530. https://doi.org/10.1007/BF00542151   DOI
144 Gustafsson L, Walker O, Alvan G, Beermann B, Estevez F, Gleisner L et al (1983) Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol 15:471-479. https://doi.org/10.1111/j.1365-2125.1983.tb01532.x   DOI
145 De Vries P, Oosterhuis B, Van Boxtel C (1994) Single-dose pharmacokinetics of chloroquine and its main metabolite in healthy volunteers. Drug Investig 8:143-149. https://doi.org/10.1007/BF03259430   DOI
146 Clemessy JL, Favier C, Borron SW, Hantson PE, Vicaut E, Baud FJ (1995) Hypokalaemia related to acute chloroquine ingestion. Lancet 346:877-880. https://doi.org/10.1016/S0140-6736(95)92711-5   DOI
147 Goyal V, Bordia A (1995) The hypoglycemic effect of chloroquine. J Assoc Physicians India 43:17-18. PMID: 9282631